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1. PROCEDURE OF WAVES 

MEASUREMENT WITH THE HELP 

OF WAVES 

  The objects with wave character in the 

world surrounding us are universal. The wave 

nature is common as for the standards of time and 

length, so and the objects measured with their help, 

which are consisting from elementary particles. It is 

enough to recollect that, as the standard of time - 

second is accepted certain number of periods of 

atomic oscillations of cesium (Cs), and as the 

standard of length - certain number of wavelengths 

of atomic radiation of krypton (Kr). Otherwise, the 

temporary and spatial physical measurements are 

the operations of comparison with characteristics of 

waves: with period T and with length of a wave . 

But if all surrounding us have the properties of 

wave, all this may be described from positions 

common for all systems having waves character. 

The idea about a construction of the metric system, 

based on properties of waves, follows from here. Or 

else, the speech goes about the measurements and 

relations between results of these measurements in 

different systems of reference, if the objects of 

measurement and the measuring instruments have a 

wave character simultaneously. This problem is 

important when researching the interactions 

between waves. The determination of metric the 

waves interactions is equivalent to understanding, 

how waves “see” or “perceive” each other. 

  For simplicity, in the beginning we shall 

suppose that, the instruments and the objects of 

supervision are described by harmonic functions. 

Let us assume that, the standing wave is accepted as 

the instrument and is described by expression:  

   tkxAa coscos  .     (1) 

  By setting such wave, we thus set the 

metric, namely: 

- the direction of the axis x - coincides with 

direction of propagation of the wave; 

- the spatial scale - is defined by length of a wave 

k




2
 ; 

- temporary scale - is defined by period of a wave 



2
T . 

 Otherwise, the standing wave executes the 

same role by a natural mode, as the rulers and the 

clocks in the special theory of relativity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A frame, determined by standing wave: (1) 

a) - in a fixed point; b) - in a fixed instant. 

 Thus cost defines an instantaneous value 

of wave amplitude a, in the fixed point, with a 

coordinate x1 (figure 1a). It is possible to say that 

this term sets the rhythm of time or serves as a 

chronometer in the examined point. 

 The term coskx sets the dependence of 

oscillations amplitude from a co-ordinate (figure 

1b), hence, the position of points with an identical 

phase of maximums, determines the spatial scale. 

The question on physical sense of amplitude A will 

be discussed after. 

 May appear the question: how we measure 

x and t, if the wave (1) himself serves as system of 

co-ordinates. It is important the physical existence 

of wave (1) as a standard. Such as exists the meter 

x =x1= const 

a = A(x1)cost 
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a = A(t1)cos kx 
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(or ft), the length of which is not measured before 

using. 

 The wave-object, “resting” in system (1), 

will be described by similar expression: 

   txkAa 000 coscos  .        (2) 

The measurement of its length in system of co-

ordinates (1) consists in the ratio determination 

between lengths of object-wave and scale-wave 


0n ,         (3) 

Similarly, the period measurement of object-wave 

consists in ratio determination between the periods 

of the object-wave and scale-wave: 

T
T

n 0 ,       (4) 

 The question about signals, “used” by the 

waves, for executing the discussed measurements, is 

deprived of sense. The waves are not beside with 

each other, but are exist in the same medium 

simultaneously. They are imposed accordingly to a 

principle of a superposition. 

 The wave-object (2) can be decomposed 

into two travelling waves, which run in opposite 

directions, of a kind: 

)cos(
2

0001 xkt
A

a      (5) 

)cos(
2

0002 xkt
A

a   ,  (6) 

It is possible to be convinced by immediate 

substitution in that: a0 = a01+a02. In common case, 

in expressions (5) and (6) - frequencies and the 

wave numbers can be different: 
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where 010 and k01k0. Then the wave-object 

will be described by the formula: 
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 The expression (9) describes a quasi-

standing wave, which moves relatively of 

laboratory frame (1). The value 

t
2

001 



             (10) 

in the first factor determines the shift of nodes and 

loops of object-wave along a spatial co-ordinate. 

Really, in the formula (2) the first factor describes 

motionless periodic function in the correspondence 

with figure 1b. If to add a time-dependent 

component to argument of this factor, then with the 

course of time this function will be moved along x. 

Of it, it is possible to be convinced by substituting 

numerical values. 

 Similarly value 

x
kk

2

010   

in second factor determines the delay or the shift 

along the temporary co-ordinate. Physically it 

means that, the phase of a standing wave varies on 

the defined value with each period. We shall reduce 

the spatial shift to the length dimension. For this 

purpose, we shall divide formula (10) on a factor at 

x, (that is into a measure of length): 

t
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.  (11)  

Formula (11) expresses the object-wave shift along 

co-ordinate x during time t. In particular, if t=T 

(where T is the period), then x will be equal to 

shifting during period. Hence, the velocity of 

transition of object-wave is 
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In view of that  
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expression (12) is possible to copy such as: 

010

0102

001

0102

001

010

010

010
0




















kk
c

TT
c

TT

TT
v . 



On the metric of waves interactions 56 

We shall remind that, v0 is the velocity of transition 

of points with an identical phase, for example, of 

maximums of quasi-standing wave. 

 The difference between expressions (2) and 

(9) consists in that that, (2) describes the wave-

object motionless concerning a system of reference 

(1), but (9) describes wave-object moving with 

velocity v0. 

 Thus, a modification of velocity or 

acceleration is connected with reorganization of 

components of standing wave this requires 

additional efforts. Therefore acceleration may be 

detected and requires application of exterior force. 

The velocity v0, defined by expression (9), 

is not linked with movement of the continuum or 

relatively him.  But, in lack of other tools except 

waves, only she can characterize transition of 

objects. 

If 001, velocity v0  c, and at 

001, velocity, v0  - c. That means the quasi 
standing wave is transformed in running wave. 

When 0=01, velocity v0= 0. This corresponds 

to the standing wave.  Thus, the absolute value of 

velocity v can varies from 0 up to c. From here we 

can make conclusion that velocity of propagation of 

perturbation c serves as a natural limit of velocity 

of transition of objects. 

2. THE THEOREM ABOUT 

INVARIANCE OF MAXIMUM 

VELOCITY OF PERTURBATION 

PROPAGATION RELATIVELY TO A 

SYSTEMS OF REFERENCE 

 Just as the wave-object (2) was decomposed 

on components (5) and (6), also it is possible to 

decompose the wave-instrument (1) in components: 
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  If in the components (13) and (14) the 

frequencies and the wave numbers differ, it means 

that: 
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we shall receive the new wave-instrument: 
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which moves relatively (1) with a velocity 
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  When the velocities of wave-object (9) and 

wave-instrument (15) are identical v0=v, the wave-

object (9), moving relatively of a non-stroked frame 

of reference (1), will be resting in a stroked frame 

of reference (15). It means, that (9) and (15) are in 

rapport as well as (1) and (2). The wave-object (9), 

in system (15), will be described by expression for a 

standing wave similar to (2): 

   ''cos''cos' 0000 txkAa  .        (17) 

The stroked frame (15) “from the own point of 

view” is motionless, hence, it will be defined by 

expression similar to (1): 

   ''cos''cos' txkAa    (18) 

 As between (2) and (1) the relations (3) and 

(4) exists in a stroked system, between wave-object 

(17) and wave-instrument (18), will take place: 

n
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  (3’) 

n
T

T


'
'0    (4’) 

The expressions (3’) and (4’) define the act of 

measurement, as well as (3) and (4). As the result in 

both cases is a same, obviously, it is impossible to 

decide which of systems, i.e. non-stroked (1) or 

stroked (18), “is true motionless” relatively to 

spatial - temporary continuum, even if the last is the 

real carrier of waves. Thus, the relativity principle 

or, otherwise, the principle of equivalence of all 

systems of reference, in model, offered by us, is 

kept. 

 We shall copy (9) with the account (12): 
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 The value (vt-x) in (19) represents the 

instantaneous co-ordinate of wave-object, moving 

in non-stroked frame (1) with velocity v (we shall 

compare it with a motionless wave-object (2)). But, 

if the expression, describing a co-ordinate, varies, 

the expression for length of a segment will vary in 

the same way. Hence the length of moving object-

wave is already will be =vT, and its wave 

number is: 

vT
k


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2
' .     (20) 

 From similar reasoning for frequency, we 

shall receive: 
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The ratio of circular frequency  to a wave number 

k is equal to a velocity of propagation of travelling 

waves or propagation velocity of perturbation c. 

  We shall demonstrate the theorem that 

the velocity of propagation of perturbation do 

not depend from the choice of reference system, 

it is equivalent to:  

c
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By using (20) and (21) we shall receive: 
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In view of expression (16), 
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Taking into account that, /T = c, 
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 Thus, we showed, that, the velocity of 

propagation of a travelling wave c does not depend 

from a choice of reference systems, within the 

framework of model, in which in quality of frames 

serve objects, having a wave nature. We shall 

remind that it is the second of two postulates of the 

special relativity theory. 

3. TRANSFORMATION OF SCALES 

OF LENGTH AND TIME FOR 

PASSAGES BETWEEN SYSTEMS OF 

REFERENCES BASED ON WAVES 

  As  and T are the scales, with which the 

objects from non-stroked system are compared, for 

process of any extent x and duration t from non-

stroked system can to write: 

nx  ;  nTt  . 

Similarly for stroked system: 

'' nx       '' nTt  ;  .   (22) 

  We shall define a relation between stroked 

and non-stroked values, in other words, the law of 

transformation of spatial and temporary co-

ordinates. 

  We shall return to the equation (12) and we 

shall express k1 through k, v and c. 
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 We shall introduce (23) and (24) into (19): 
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We shall compare (25) with (17). Both expressions 

describe the same value. The expression (25) 

describes the wave-object in the terms of non-

stroked system, and (17) - relatively to stroked 

system (18). 
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  In both expressions, the arguments of the 

first cos represent the ratio of length of the same 

segment of wave-object to an own scale or to the 

length of a wave. It is dimensionless value or 

simply a number not depending from a system of 

reference. Therefore we can equate the appropriate 

values from (17) and (25), and to receive: 
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In the correspondence with (20): 
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where n is the number of lengths of waves, 

contained in a distance from a beginning of co-

ordinates up to examined point. Similarly, passing 

from stroked system in non-stroked, it is possible to 

receive the expression 
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Here v - the velocity, with which non-stroked 

system moves “from the points of view” of stroked 

system and v - the velocity of stroked system 

relatively to non-stroked.  It is the same value only 

the direction will be changing on opposite at 

passage from one system to another. That it is 

possible to write v=-v, and therefore, (28) will be 

rewrite: 
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We shall introduce (27) and (29) into (26): 

2)(
)'')((

)(
2

''

2

'

vtx
vtxvc

c

vtx
vc

c

vtx

n
vtx

n

x
















. 

In the correspondence with (22) x/t=n/nT=c , 

hence: 
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  We shall remind that, x is the object co-

ordinate in frame, relatively of which it is moved, 

and x - its co-ordinate in system of reference, 

which is moving together with the object. Thus (30) 

defines the relation between co-ordinates of two 

frames, moving relatively each other. 

Let's mark a segment, the length of which 

in a system, in which he rests, is x=x2x1, in 

correspondence with (30), his length in a system, 

relatively which he moves, will be 

  xxxxxx   1212 ''' .  (31) 

  By doing similar transformations with 

argument of second cos in (25), we shall receive 

expression appropriate (26) for the own time: 
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Similarly to the formula (27): 
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where, in this case, n - number of periods T of 

wave-object, past from a beginning of  readout up to 

a considered instant. Accordingly: 
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We shall introduce (33) and (34) into (32): 
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We shall solve this expression in relation to t, by 

taking into account that t= nT, x= nl and 

/T=c, we shall receive: 
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The relation between the results of measurements of 

interval of time in two systems of reference: 

  tttttt   1212 ''' .       (35) 

Here t is the interval of time between two events, 

happening in the same point x, in the system, where 

the wave-object is motionless. t - same interval, 

measured in a frame, where the wave-object is 

moved. 

 The executed deduction is not connected 

with specific values of  and , it can be applied to 

the linear combinations of functions pairs such as 

(5), (6) and (7), (8). This deduction can also be 

generalised for two function of the any form, being 

the superposition of pairs of waves travelling in the 

opposite directions along l: 

) + ( = 11 ctlff  

) - ( = 22 ctlff , 

if these functions are decomposed in Fourier series 

or, in a limit, can be described with the help of 

integrals Fourier. Hence, the described in the 

present article is also can be applied to a more 

complex objects than the harmonic waves. 

 We did not impose any restrictions on 

amplitude. In particular, it can be radial function of 

an aspect )( nrAA  , where r is radius and n some 

positive number, then we shall receive centrally 

symmetric spherical waves, which can describe 

elementary particles. 

CONCLUSIONS 

Formulas (31) and (35) - represent Lorentz 

transformations. Thus, we have shown, that the 

Lorentz transformation laws take place in a case, 

when both, objects of measuring and tools, through 

which these measuring are made, are waves in the 

same continuum. As the Lorentz transformation 

laws represent essence of a special relativity theory, 

from described above  follows, that there is no 

inconsistency between a relativity theory and 

existence of a material continuum as waves carrier. 

Moreover, in offered model the postulate about a 

finiteness of a maximum velocity of signal 

propagation is transformed in theorem, and 

becomes clear, why it is impossible to find out the 

carrier of waves through experiences such as a 

Michelson-Morley, experiment, that is attempts to 

spot first derivative of coordinate on time. 

Whether has a value a problem about 

materiality of a spatially - temporal continuum? 

This problem became to actual connection with 

attempts to create relativistic propulsions unit. One 

device of such type is described by Takuya Ishizaka 
[1]. 

Within the framework of the existing 

concepts about lack of a material basis at a spatially 

- temporal continuum (ether) any device of a similar 

type can not be implemented, as it contradicts a 

conservation law of impulse. Simply speaking «it is 

impossible to be pushed from nothing». The 

problem gains completely other aspect, if the 

model, offered by us, is correct. In this case, 

basically, already there is a basis, from which it is 

possible to be repelled, and all becomes matter of 

technique. 
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