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INTRODUCTION 
 

The rigorous estimation of steady-state 

stability of a Power System requires: 

 writing of small-disturbance linearized 

differential equations for all the elements and 
control devices; 

 writing and solving the characteristic equation 

and examination of its roots (eigenvalues of the 

state matrix); 
A real eigenvalue corresponds to a non-

oscillatory mode. A negative real eigenvalue 

represents a decaying mode. The larger is its 

magnitude the faster the decay. A positive real 
eigenvalue represents aperiodic instability. 

Complex eigenvalues occur in conjugate 

pairs, and each pair corresponds to an oscillatory 
mode. The real component of the eigenvalues gives 

the damping, and the imaginary component gives 

the frequency of oscillation. A negative real part 
represents a damped oscillation whereas a positive 

real part represents oscillation of increasing 

amplitude. 

The absolute term of characteristic equation 
is the determinant of the linearized system 

differential equations and under certain conditions 

can coincide with the determinant of power-flow 
Jacobian [1]. This is valid when the system contains 

infinite buses and the following conditions are 

holding true when performing the power flow 
calculation: 

 for generator buses the active power and 

voltage magnitude are specified; 

 loads   are   specified   with  the  same  static 

 characteristics as for steady-state stability 

analysis; 

 the slack buses are infinite buses. 

Taking into consideration the statement 
above, the estimation of steady-state aperiodic 

stability is possible in combination with power-flow 

calculation. Thus, the power-flow calculation 
programs can in addition be used for the estimation 

of steady-state aperiodic stability. 

It is known that power-flow equations 

presented in either forms nodal current or nodal 
powers contain complex and complex conjugate 

values. The existence of complex and complex 

conjugate values makes nodal deviation functions 
non-derivable relatively to their component 

variables. Therefore, it is necessary to separate the 

real and imaginary parts of power flow equations 

when the iterative methods requiring Taylor-series 
expansion of nodal deviation functions are utilized. 

By separation of real and imaginary parts of 

power-flow equations it is possible to obtain only 
solutions for steady states that are physically 

feasible in power systems. At the same time, if in 

power system nodes are injected powers that exceed 

a definite limit, then it is impossible to obtain any 
real solutions because in this case the steady state 

physically doesn’t exist. But, the determination of 

real solution non-existence by the divergence of 
iterative process is a difficult problem. 

In this connection, it is proposed to extend 

the domain of power flow solutions to the domain 
of complex numbers. The power-flow equations are 

written and/or solved in such a way that we can get 

solutions both for existing and non-existing steady 

states. The iterative process converges even if 
steady state doesn’t exist in reality; the solutions are 

obtained in any case. Analyzing the values of 

obtained solutions, it is possible to answer the 
question whether the steady state exists or not. The 

other advantage is that we can approach the steady-

state stability limit point from the domain of non-

existing steady states. 

 

1. TWO-NODE STUDY CASE 
 

In this paper the two-node power system case 

is studied. A general system configuration is shown 

in fig. 1. Analysis of systems having such simple 
configurations is extremely useful in understanding 

basic effects and concepts. 
 

 
 

 

 
 

 

 
 

 

 
 

Figure 1. General two-node power system 

configuration. 
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1.1. Analytical analysis 
 

In this power system bus 1 is a PQ load bus 

and bus 2 is a slack bus. For power flow solution 

the following equation is written: 
 

  11212111
ˆˆ SUUYUY   (1.1) 

 

Where: 

1U , 2U  –  complex voltages in node 1 and 2 

respectively; 

1Û , 2Û  –  complex conjugates of 1U  and 

2U  respectively; 

1Ŝ  – complex conjugate of 1S ; 

2

1
11

Y

Z
Y  ;     

Z
Y

1
12  . 

Further all the complex conjugate values will 
appear using the character ^ over the letter. 

After some transformations and using some 

notations equation (1.1) is written in the following 

way: 
 

1111
ˆˆˆ SNUMUU   (1.2) 

 

Where: 2

11

12 U
Y

Y
M    and  

11

1

Y
N  . 

Now, we will rewrite equation (1.2) in 

following way: 
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 (1.3) 

 

Where:  11 Re UU  ,  11 Im UU  ,  MM Re , 

 MM Im ,  NN Re ,.  NN Im . 

Performing complex operations on equation 

(1.3) and separating the real and imaginary parts we 
will get two real equations: 
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
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 (1.4a) 

01111  PNQNUMUM  (1.4b) 

 

From equation (1.4b) 1U   is expressed: 

 

M

PNQNUM
U




 111

1  (1.5) 

Substituting (1.5) for 
1U   in equation (1.4a) 

following quadratic equation is obtained: 
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(1.7c) 

The analytical solution of a quadratic 

equation is well known. So, 
 

a

db
U




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2
1  (1.8) 

Where, 
 

cabd  42
 (1.9) 

 

Knowing 
1U  , we easily calculate 

1U   using 

equation (1.5). 

Equation (1.8) gives two solutions for 
1U  . 

One of them corresponds to a stable steady state and 

the other one to an unstable steady state. In steady-

state stability limit point (where 0d ) we will 

have two identical solutions. 

The maximum power that can be 
transmitted through line is determined by equating 

the discriminant of the above quadratic equation 

(1.6) to zero and solving for 1P . Equating to zero 

equation (1.9) and substituting instead of a , b  and 

c  expressions (1.7a), (1.7b) and (1.7c) the 

following quadratic equation is obtained: 
 

01max,11

2

max,11  cPbPa  (1.10) 
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The coefficient k appears here from the 

following expression: 
11 PkQ  . 

k depends on power factor (cos ) and is 

calculated: 1
cos

1
2












k . 

Power factor is maintained constant. 
Quadratic equation (1.10) gives two solutions 

for max,1P . One solution, which is positive, doesn’t 

make sense because we have consumption in node 1 

not generation. 

For max,11 PP   the discriminant d of equation 

(1.6) is positive and we will have an existing steady 

state. In this case we get two real solutions for 
1U  . 

One of them corresponds to a stable steady state and 

the other one to an unstable steady state. 

For max,11 PP   the discriminant d of equation 

(1.6) is equal to zero and we are in steady-state 

stability limit point. In this case we get two identical 

solutions for 
1U  . 

For max,11 PP   the discriminant d of equation 

(1.6) is negative and we will have a non-existing 

steady state. In this case we get two complex-

conjugate solutions for 
1U  . These complex 

solutions in themselves are of no value because 
such steady states can not exist in reality. But, the 

fact that the solutions are complex gives us the 

information that the imposed 
1P  is over the power 

limit max,1P and that in such conditions steady state 

can not exist. This criterion can be used when 

determining max,1P . 

In this simple case of power system with 

only two nodes it is possible to determine max,1P  

analytically. In real power systems the analytical 
determination of power limits is impossible. The 

power limits in these cases can be determined by 

successive power flow calculations at each step 
increasing the consumption with a certain amount in 

a certain deficit zone. In this case the initial 1P  

should be less than max,1P and in order to perform as 

less steps as possible it is desirable that the initial 

1P  to be as close to max,1P as possible. The problem 

is that when choosing the initial 
1P , in general, it is 

difficult to guess the value of 
1P  in such a way that 

max,11 PP  . So, from the very beginning we can 

have a situation when max,11 PP  . In this case the 

conventional power flow programs do not converge 

to any solution and we have to guess a new value of 

1P  less than the precedent one. So, the try-and-error 

approach is used until the initial value of 
1P  

satisfies the condition max,11 PP  . 

If the power flow algorithm permits to get 

solutions when max,11 PP  we can go towards the 

power limit point ( max,11 PP  ) from the domain of 

non-existing steady states. This can improve the 
convergence of iterative process to the power limit 

point – max,1P . 

Equation (1.2) can also be solved in 

complex form. First, we will write one more 

complex equation, which is conjugate of equation 
(1.2). 

 

1111
ˆˆˆ SNUMUU   (1.12) 

 

From equation (1.12) 
 

M
U

SNU ˆ1ˆˆ

1

11   (1.13) 

 
Substituting now expression (1.13) in 

equation (1.2) and performing some transformations 

the following complex quadratic equation is 

obtained:  
 

01

2

1  CUBUA  (1.14) 
 

Where: 
 

MA ˆ  (1.15a) 

MMSNSNB ˆˆˆ
1   (1.15b) 

1
ˆ SNMC   (1.15c) 

 

The discriminant of quadratic equation (1.14) 
is a real number. 
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 (1.16) 

 

Where: 
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(1.17b) 

    222

1 MMC   
 

(1.17c) 

The power limit max,1P can be obtained 

solving the quadratic equation, which is obtained by 
equating to zero equation (1.16). The positive 

solution, doesn’t make sense because we have 

consumption in node 1 not generation. 

For max,11 PP  the solutions of quadratic 

equation (1.14) are also solutions of equation (1.1). 

1Û  calculated from (1.13) is equal to conjugate 

from 1U . 

For max,11 PP  equation (1.1) doesn’t have 

any solutions. Equation (1.14) in this case has 
solutions but they do not satisfy equation (1.1) if we 

put instead of 1Û  conjugate from 1U . When we 

calculate 1Û  from (1.13) and put this value in 

equation (1.1) it will be satisfied. 1Û  calculated 

from (1.13) is not equal to conjugate from 1U  in 

this case. From this a criterion can be formulated. 

Until the stability limit point 1Û  calculated 

from (1.13) is equal to conjugate from 1U  and 

steady state exists. After the stability limit point 1Û  

calculated from (1.13) is not equal to conjugate 

from 1U  and in this case steady state can’t exist. 

The relations between 1U  , 1U   and 1U , 

1Û  are following: 
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Until the stability limit point 1U   and 1U   are 

real values. After the stability limit point they 
become complex and this fact tell us that 

max,11 PP  . 

Analytical solutions were performed for the  

following data:  

72.3448.24 jZ    Ω,     

6108.208  jY  S,     1162 U  kV, 

8001 P  MW  (with a step of  0.1 MW),        

85.0cos 1  const  lag. 

Analytical solutions for these data are: 

Steady-state stability power limit – 

53153184809751.70max,1 P  MW; 

Critical voltage – 

55333905424350.59,1 crU  kV  

Critical angle – 

79985860755711.11,21 cr  degree. 

Complex voltage in steady-state stability limit 

point: 

08839279877439.11

82751804059723.58111

j

UjUU 
 kV. 

It should be mentioned again that solutions 

obtained for 
max,11 PP  do not exist in reality. These 

fictive solutions can only be of use when 

determining whether steady state exists or not. The 
steady-state stability limit point is on the boundary 

of existing and non-existing steady states. The 

possibility of getting solutions for non-existing 
steady states, even they are fictive can help in 

determination of steady-state stability limit point. 

 

1.2. Numerical solution 

 
The analytical solution is possible only for 

a system consisting of two nodes. For systems with 

more than two nodes solutions can be obtained only 
using a numerical method. Therefore, the 

investigation of numerical solution is of great 

importance. Bellow the investigation of numerical 
solution is performed for the two-node system 

examined above analytically. Performing complex 

operations on equation (1.1) and separating it into 
real and imaginary part the following two real 

equations are obtained: 
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 (1.20) 
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Where:  1111 Re YG  ,  1111 Im YB  , 

 1212 Re YG  ,  1212 Im YB  . 

In case when bus 1 is a PV-bus the 
following two equations are written: 
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The variables of equations (1.20) are 
1U   

and 
1U  , which are respectively real and imaginary 

part of 1U . As was shown above these are real 

values in case when steady state exists and become 

complex in case of non-existing steady states. If the 

iterative process is looking for solutions only from 
the domain of real values the convergence is 

impossible for the cases when max,11 PP  . To get 

solutions for non-existing steady states we have to 

extend the domain of solutions to the domain of 

complex numbers. This can be done by assigning at 
the beginning of iterative process complex values to 

1U   and/or 
1U  . For example:  jU 11101   and 

01 U . So, now we consider 
1U   and 

1U   as 

complex variables. In this case the iterative process 

is looking for solutions from the domain of complex 

values. 

When 
max,11 PP   the iterative process 

converges to only real solutions; complex solutions 

are not possible in this case. 

When 
max,11 PP   the iterative process 

converges to only complex solutions; real solutions 
do not exist in this case. 

The magnitude of the Jacobian determinant 

in steady-state stability limit point calculated using 

analytical solutions presented above is equal to 
-161048270459.86636935  . In fact, it should be 

zero in this point, but because of roundoff computer 

errors it is not ideally equal to zero. The Jacobian is 
singular in this case. So, if we assume that when 

calculated numerically solutions can be obtained 

absolutely precise, we would have convergence 

problems in steady-state stability limit point. 
In practice, numerical solutions are 

obtained with a certain precision. Solutions 

obtained numerically slightly differ from the 
analytical solutions. The magnitude of the Jacobian 

determinant in steady-state stability limit point 

calculated for solutions obtained numerically with a 
precision of 0.001 kV is equal to 

-4100276572.13412275  . As we can see, the 

difference between the Jacobian calculated 

numerically and analytically is considerable. The 

Jacobian is not singular when it is calculated using 
numerical solutions, which are approximate. 

Therefore the iterative process converges in steady-

state stability limit point. 
A series of power flow calculations were 

performed for 8001 P  MW  (with a step of  

0.1 MW). At every step voltages are calculated with 

a precision of 0.001 kV. The magnitude of Jacobian 
determinant is decreasing to a certain minimum 

value and after that it is increasing. The minimum 

value of magnitude of Jacobian determinant 

(0.1233) corresponds to 3.701 P  MW, which can 

be considered as 
max,1P . Comparing this value (70.3) 

with 
max,1P  calculated analytically 

(70.31848097515315) we can conclude that the 
precision is quite satisfactory. Since the 

approximate solutions are used when calculating 

Jacobian its determinant doesn’t decrease to zero 

(the Jacobian doesn’t become singular) and we do 

not have convergence problems whatever 
1P  is. 

The convergence has been studied for two 

cases. In first case for every 
1P  flat start was used. 

The convergence in this case can be considered 

satisfactory even when max,11 PP   - 14 iterations 

and less are necessary to get solutions. In second 

case for 01 P  flat start was used and for other 
1P  

the solutions from the previous step were used. 

When using non-flat start the convergence is better 
than in case of flat start. The solutions are obtained 

in maximum 5 iterations. 
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