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ABOUT THE VALUES OF THE PARAMETERS THAT DESCRIBE
THE NEWTONIAN PROBLEM OF THE EIGHT BODIES

Elena CEBOTARU, PhD
Technical University of Moldova

Abstract. We consider the Newtonian restricted eight bodies problem with incomplete symmetry.
We investigate the stability of some configurations of this problem. The values of the parameters
that describe the Newtonian problem of the eight bodies are investigate by some numerical methods.
For geometric parameter the intervals of linear stability and instability are found. All relevant and
numerical calculation are done with the computer algebra system Mathematica.

Keywords: Newtonian problem; differential equation of motion; configuration; stationary points;
linear stability.

CONSIDERATII DESPRE VALORILE PARAMETRILOR CE DESCRIU
PROBLEMA NEWTONIANA A CELOR OPT CORPURI

Rezumat. Se considerd problema newtoniani, marginitad a opt corpuri cu simetrie incompleta. Se
cerceteazd stabilitatea unor configuratii ale acestei probleme. Folosind metode numerice se deter-
mind valorile parametrilor care descriu problema cercetata a celor opt corpuri. Pentru parametrul
geometric se determing intervalele de stabilitate si instabilitate liniara. Toate calculele numerice se
obtin aplicand sistemul de calcul algebric computerizat Mathematica.

Cuvinte cheie: problema Newtoniani, ecuatia diferentiald a migcirii, configuratie, puncte stationare,
stabilitate lineara.

Introduction

At present, qualitative studies of dynamical models of space are based on the search for
exact particular solutions of differential equations of motion and subsequent analysis of their
stability using the latest advances in computer mathematics. For this, it is required, first
of all, to develop mathematical methods and algorithms for constructing exact partial solu-
tions, since in the case of the Newtonian many bodies problem, for example, the number of
solutions found is very limited.

Most of the exact solutions found for the Newtonian n-bodies problem belong to the
class of so-called homographic solutions, the sufficient conditions for their existence were
obtained by A. Wintner in the first half of the twentieth century, and the necessary conditions
were formulated later by E. A. Grebenikov (see [3]).

The research method is based on the application of the analytic and qualitative theory
of differential equations, the stability theory of Lyapunov-Poincaré, and also on the use of
the capabilities of modern computer algebra systems for performing numerical calculations,
processing symbolic information, and visualizing the obtained results.

It is known that in studying of the differential equations of restricted problems, first of
all, it is necessary to study the existence of particular solutions of ,equilibrium positions” in

the unlimited small size problems.
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Figure 1. Studied model

Description of the configuration

We will study a particular case of the n-bodies problem describing in a non-inertial space
Pyxyz the motion of seven bodies Py, Py, P», P3, Py, Ps5, Pg, with the masses mqg, m1, ma, ms,

my, ms, Mg, which attract each other in accordance with the law of universal attraction. We

will investigate the planar dynamic pattern formed by a square in the vertices of which the

points P, P>, P3, Py, are located, the other two points Ps, Fg, having the masses ms = mg

are on the diagonal P;Ps of the square at equal distances from point Fp, in around which

this configuration rotates with a constant angular velocity w which is determined from the

model parameters (see Flig.1 ).

The differential equations of the Newtonian problem of seven bodies in a non-inertial

cartesian coordinate system Pyryz have the form:
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About the values of the parameters that describe the Newtonian problem of the eight bodies

To determine w we will carry out coordinate transformation that would exclude from
the right-hand sites of the equations (1) the time ¢:

zj = Xjcos (wt) — Yjsin (wt),
yj = Xjsin (wt) +Yj cos (wt) , (3)
zj = Zj.

Since we study the planar configuration, we have z; =0, j = 0,1,...,6. In the new coordi-

nates the equations (1), have the form:

dt? ai 3 X’ (4)
d;gk — w?yk _ zde _ flmot+m)Ys ORj,
t

{ Xy W2 Xp + 2wk _ fmot+mi) Xk | OR;

k
dt rg 0Xy”’

.
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R =1 ym (s - 24F) g4k
=1 :
2 2
q AL = (X = X))+ (Y = Y0)7, (5)
2 _ y2 2
ry =AY
| k=1,2,...6.

We can assume that P(1,1), Po(—1,1), Ps(—1,—1), Ps(1,—-1), Ps(a, ), Ps(—a, —av),
f=1mo=1, ms=me.
Then out of the differential equations of the motion we obtain the existence conditions

of this configuration:

(6)

{ m1 = ms, mg =my = f1 (M1, ),
ms = me = fa(my1,a), w? = f3(m1,a).

Intervals of admissible values for the parameter « are determined by the conditions

mg = myg > 0;ms =mg > 0;w? > 0. (7)

The functional dependences mo = my = fi(m1,a), ms = mg = fa(m1,a,), w? =

fa(m1,a) can be seen from graphs obtained with the graphical package of Mathematica (see
Fig. 2-4).

Theorem 1. The verification of relations (7) represents the sufficient condition of existence
of the homographic solution of the Newtonian problem of seven bodies, the its configuration
of which represents a square Py PyP3Py with one of the bodies (Py) located in the origin of
the coordinates, and the other two Ps, Pg are located of the diagonal Py Ps.

For example, for m; = 0.1 this dependence is shown in Fig. 5.

In the Table 1 are displayed the admissible intervals of a according to some values of
m1 , approximately calculated using the graphical tools of Mathematica.

It is known that this dynamic model generates a new problem - the restricted problem
of eight bodies. It will be studied the motion of the body P with a infinitely small mass (the

so-called passive gravitational body) in the gravitational field by the given seven bodies.
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5. The functional dependences

myqg = f1(0.1,m1), my = Mg —

f2(0.1,m1), w? = f3(0.1,my)

Table 1:
mi Intervals allowed for o
0.0001 | ——
0.001 | ———
0.01 (0.8582; 0.85857)
0.1 (0.715;0.718)
1 (0.48965; 0.5053)
10 (0.291; 0.320)
100 (0.149;0.2871)
1000 (0.050; 0.2838)

Differential equations that describe motion of the body P(x;y;z) which gravitates

passively in the field of the other seven bodies in the rotating space have the form (see [2]):

10



About the values of the parameters that describe the Newtonian problem of the eight bodies

( d’X dY _ o fmoX 8R
d Y dX moY | OR
§ L4 2udX — o2y - frg + 08 (8)
¢’z _ _fmoZ | OR
\ dt2 r3 0z’

where

(

6
1 XX, +YY;,+2Z7;
R = m; — ,
rym (2 .

i
2 2 2

{ A= (X = X) 4+ (YY) + (2 - 2)°, 9)

rP=XHYP+ 23 P = XA Y+ 27,

| j=1,2,..,6,

(X;;Y;; Z; = 0) are the respective coordinates of the bodies Py, P>, P3, Py, Ps, Ps and are

determined by the conditions of existence of the studied configuration.
Determination of stationary points

According to the definition of the stationary solutions of the differential equations,

the equilibrium positions (in case when they exist) are solutions of the functional system of

equations:
(de _, dy _ dz_
I A A
dd—?:wx—l—Qwv fmox_i_%’
< d fmoy | OR 1o
vo_ _ moy
a = w2y — 2wu — 3 + e
dw _ OR
. dt — 0z’
and )
u=0, v=0, w=0,
2 _ fmor | OR _
) weT + 2wv 3 + O =0, (11)
2. fmoy OR _ OR _
w Yy — 2wu — 3 + By I =0,
\

For simplicity as above it has been taken f = 1, mg = 1. Replacing in relations (11)
(XJ7Y7>Z])7 m2 =My = fl(mlaa)a ms = Mg = fg(Tﬂl,Oé) and w? = f3(m17a)7 determined

above for admissible o and m; , we obtain the following system:
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(12)

The equations in the system (12) have a rather complicated structure. Its solving

is quite cumbersome. If the solution of the system (12) will to be determined, then it

would be obtained the solution of the equilibrium position of differential equations describing

the restricted problem of the eight bodies. Using the graphical package of Mathematica

for different parameter values o and m; have been constructed the graphs of the curves

f(z,y) and g(z,y) described by the equations in the system (12). Obviously, the points

of intersection of these curves in the plan Fyxy will be the equilibrium positions of the

investigated system. For concrete values of m; and a we obtain concrete stationary points.

For this we use the program 1.
Program 1

graph[n_,a_]:=

Module[{m1 =n, a =a}, gf = f(z,y,m1,a); 99 = g(z,y,m1, a);

cpx = ContourPlot[gf,{x, —2.5, 2.5}, {y, 2.5, 2.5}, Contours — {0},
ContourShading — False, Plot Points — 100, Contour Style — { Black},
Azes — True, Frame — False];

cpy = ContourPlot|g, {x, —2.5, 2.5}, {y, —2.5, 2.5}, Contours — {0},
ContourShading — False, Plot Points — 100, ContourStyle — {Dashed},
Azes — True, Frame — False];

square = ListPlot[{{1,1},{1,—1},{—1,—-1},{—1,1}},

PlotStyle — {PointSize[0.02] }];

points = ListPlot[{{a, a}, {—a, —a}}, PlotStyle — {PointSize[0.02]}];
MO := Graphics|Text[" P}, {—0.15, —0.15}]];

M1 := Graphics|Text[" P, {0.85,1.05}]];

M2 := Graphics|Text[" Py, {—0.85,1.05}]];

12



About the values of the parameters that describe the Newtonian problem of the eight bodies

M3 := Graphics|Text][" Pj,{—0.85, —1.05}]];
M4 := Graphics|Text[" Py, {0.85, —1.05}]];
M5 := Graphics|Text]" P!, {occ — 0.1, — 0.1}]];
M6 := Graphics[Text|"P{,{—a+ 0.1, —a+ 0.1}]];
f1= FiindRoot[{gf == 0,99 == 0},{z,1},{y,0}};
S1:= Graphics[Text|"SY,{1.55, —0.25}]]; Print["SY, f1];
f2 = FiindRoot[{gf == 0, gg == 0}, {z,0}, {y, 1}]; Print["SY, £2];
f3 = FiindRoot[{gf == 0,99 == 0}, {z, =1}, {y, 0}]; Print["SY, f3];
f4 = FiindRoot[{gf == 0, gg == 0}, {z,0}, {y, 1}]; Print[" S}, f4];
f12 = FiindRoot[{gf == 0,99 == 0}, {z, 1}, {y, 1.05}]; Print[" N7, f12];
f13 = FiindRoot[{gf == 0,gg == 0}, {x, 0.9}, {y,0.9}]; Print["NY, f13];
f21 = FiindRoot[{gf == 0,99 == 0}, {z, 1}, {y, —1.05}]; Print["N{, f21];
f22 = FiindRoot[{gf == 0,99 == 0}, {z, 0.9}, {y, —0.9}]; Print[" N}, f22];
f31 = FiindRoot[{gf == 0,99 == 0}, {z, —1},{y, —1.05}]; Print["NY, £31];
[32 = FiindRoot[{gf == 0, gg == 0}, {z, —0.9}, {y, —0.9}]; Print["N{, f32];
f41 = FiindRoot[{gf == 0, gg == 0}, {z, —1},{y, —1.05}]; Print["NZ, f41];
f42 = FiindRoot[{gf == 0, g9 == 0}, {z, —0.9}, {y,0.9}]; Print["N{, f42];
Showl[points, square, cpx, cpy, pl, p2, MO, M1, M2, M3, M4, M5, M6, S1],
PlotRange — {{—2,2},{—2,2}}, DisplayFunction — $DisplayFunction,
AzesLabel — {x,y}, Aspect Ratio — Automatic,
PlotLabel —" my ="<> ToString[n];"” a =" <> ToString[a]""]].

For m;=0.01 and a=0.8584 the result of this program is displayed in Figure.6.

m=0.01 ; a= 08384

-

I
5l:{x - 1.41163, y— -0.123732}

Nl:{x-1.15597, v—= 1.15587]
H2:{x - 0.372839, v = 0.372839]
52:{x - -0.123792, y—= 1.41168}
N3:{x - 1.13066, v— -1.1306&]
N4:{x - 0.579787, vy = -0.879787}

53:{x—--1.41168, v - 0.123752}

x NS:{x - -1.15597, ¥ » -1.15597]
Né:{x - -0.872839, v — -0.872839)
N7:{x - -1.15597, ¥ = -1.15597}
N3:{x = -0.879787, v = 0.879787}

S4:{x—--0.123792, vy —= 1.41168]

Figure 6. graph[0.01,0.8584]
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The linear stability of this stationary points is studied.
Determination of the admissible variations intervals for the parameters

To study the stability of the points N;, S; by the first method of A.M. Lyapunov it
is necessary to linearize the system of the differential equation (11) in the neighborhood of
each stationary point N;, S;. In advance, the equations of motion of the point that passively
gravitates must be written in the normal Cauchy form.

Table 2 below contains the eigenvalues Aq, Ao, A3, A4 for stationary points Ny and S7.
Analyzing the Table 2 we notice that for the stationary point Np, varying the values of

Table 2:
N1 S
" “ A1, A2 A3, A A1, A2 A3, A
0.01 | 0.8583 | £1.30918 | £1.12374+ +0.28434 1 +0.51826 ¢
0.01 | 0.8584 | £1.30792 | £1.12295+ +0.49471 ¢ +0.32201 ¢
0.01 | 0.8585 | £1.30666 | =1.12216+ +0.459411 +0.369351
0.01 | 0.85853 | £21.30627 | £1.121977 | ££0.00440 + 0.36926¢ | £=0.00440 — 0.36926 ¢
0.1 0.715 | £1.19131 | £1.067897 | £0.34443 + 0.53193¢ | £0.34443 — 0.53193 ¢
0.1 0.717 | £1.17894 | +£1.06051¢ | £0.40784 + 0.564491¢ | £0.40784 — 0.56449¢
1 0.48965 | £1.36716 | £1.306164¢ | =0.74472 4+ 0.828097 | £0.74472 — 0.82809 ¢
1 0.505 | £1.23329 | £1.128117 | £0.75807 + 0.83104¢ | £0.75807 — 0.83104 ¢
10 0.291 | £2.50383 | £2.63038% | £1.6617 4+ 1.88497¢ | £1.6617 — 1.88497+¢
100 0.2 + 8.22619 | +8.56881 ¢ +15.3124 + 8.390991 ¢
1000 0.2 +27.1564 | £28.0709¢ | £17.7615 4 19.8928¢ | =17.7615 — 19.8928 ¢

the parameters m; and « the eigenvalues are not purely imaginary. The same result is
obtained for the other N; points. It follows that stationary NN; points are unstable in the

first approximation. We will formulate this result by the theorem:

Theorem 2. The radial equilibrium points N; of the differential equations describing the
restricted eight body problem are unstable in the first approximation for any values of the

parameters my and o.

From Table 3 we can see that in the equilibrium point S for certain values of the
parameters mi and « the eigenvalues of the matrix A are purely imaginary. Hence this
stationary point S is stable in the first approximation. Similarly, similar results are obtained

for other points of type S;.

Theorem 3. There are values of the parameters my and « for which the bisectorial stationary

points S; of the restricted eight body problem are stable in the first approrimation.

Moreover, we obtain that only for 0.85812 < a < 0.85854 and mj = 0.01 there are

stationary points in the research problem that are linearly stable.
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About the values of the parameters that describe the Newtonian problem of the eight bodies

Concluding remarks

We have determined sufficient existence conditions of configuration describing the re-
stricted Newtonian eight bodies problem. We have used some built in functions of the
Mathematica programming environment in order to determine the stationary points. Their
linear stability has been studied. It has been demonstrated that there are values of the
parameters m; and « for which the bisectorial stationary points are stable in the first ap-

proximation. Intervals of stability and instability for geometric parameter are found.
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