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Abstract. The article uses the Currents’ Physical Component (CPC) power theory to determine 

the parameters of the reactive compensator in the case of a three-phase four-wires unbalanced 

receiver on a non-sinusoidal periodic power supply. The basic relationships and the way of 

calculating the compensator reactance is presented. The compensator was built from two parts: 

the first working in the star-topology, and the second in the triangle-topology. The correctness 

of the formulas has been verified by presenting the results of calculations for an exemplary 

system. 

1. Introduction 

This article presents the method of power compensation using a reactive compensator in a three-phase 

four-wires circuit for periodic, non-sinusoidal waveforms using the Currents’ Physical Component 

(CPC) power theory. A linear, three-phase, four-wire and unbalanced receiver, with three-phase source 

with non-sinusoidal waveforms was adopted for the analysis. The general idea of the CPC theory was 

taken from several articles [1-5,16]. An analysis on a non-linear receiver is discussed in [6-15]. 

Decomposition of the current components in a four-wire circuit was developed in [1,2,5]. The power 

compensation in the four-wire circuit in the case of sinusoidal waveforms is shown in [5]. In this 

article, an extension of this material will be presented taking into account the possibility of power 

compensation in a four-wire system with non-sinusoidal periodic forcing. 

2. Theoretical foundations and dependencies 

The CPC power theory was derived by Professor Czarnecki. Currently, three-phase four-wire circuits 

are considered in this theory. For such circuits, power compensation was developed in [2]. Theoretical 

equations and the reactive power compensation algorithm was developed there using a two-part 

reactive compensator. This article will show the practical use of these formulas. 

The power factor in a three-phase four-wire system with harmonic waveforms can be expressed as: 
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This means that the reduction of the power factor is influenced not only by the Q reactive power, 

but also by the Ds scattered power and the unbalanced powers: p
uD , n

uD , z
uD . The power factor can 

also be expressed in the field of three-phase rms current values. Only the ia active component is the 

usable part of i current. In order to improve the power factor, the values of the other components 

should be reduced. 

A reactive compensator connected in parallel to a three-phase four-wire receiver (figure 1) is able 

to influence the following components: reactive and unbalanced current. The scattered current can 

only be compensated in a serial configuration in each phase separately, thus changing the receiver's 

operating point. For a parallel compensator, the minimum value of the power factor will reach the 

value of: 
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To improve the power factor, a compensator should be built, which consists of two elements: the 

first in the star topology and the second in the triangle topology. This method was discussed in [2,5]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The  and Y 

compensators connected to 

the receiver. 

The first segment of this compensator is connected in the Y topology and it affects the reactive 

current ri  and the unbalanced current of the zero sequence z
ui . The susceptances of this segment Y

RB , 

Y
SB  and Y

TB  are equals:  
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To determine the parameters of the compensator , an analysis presented in [2] regarding the three-

wire system can be used. However, for this purpose, the resultant physical quantities describing the 

receiver together with the Y compensator should be determined. These quantities are marked with a 

single "prim" symbol. 
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Parallel connection of the receiver and the Y compensator is a equivalent circuit. Parameters of the 

equivalent circuit are presented after transposition into the triangle topology. The equivalent circuit is 

described by the following quantities, specific to the  topology: 

- the equivalent admittance, equals: 

( ) ( ) ( ) ( ) ( )nnnnn GYYYY eTRSTRSe ''''' =++= , (5) 

- the unbalanced admittance, equals: 

( ) ( ) ( ) ( ) ( ) ( )( )nnnnnn YYYY RSTR
*

STu ''''  ++−= . (6) 

 

 

( )  ( ) ( )

( ) 

( )  ( ) ( )













−−=

=

−=







,''3
3

1

'
3

2

''3
3

1

uu)(TR

u)(ST

uu)(RS

nnn

nn

nnn

YmYesB

YmB

YmYesB

 (7) 

 

The compensator  with susceptances determined in accordance with (7) causes zeroing of the 

current components of the source: reactive ir(n) and unbalanced iu(n) current. After a two-segment 

compensation, the power factor of the system takes the minimum value and it is equal to (2). 

3. Calculation example 

The single-phase receiver was built from a serial RL connection and was powered from a three-phase 

source with symmetrical voltage of the following waveform:  +=
tj

eeu 12302R
 V  10 15 tj

e
 , 

1 = 250 rad/s. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. One-phase receiver connected to a three-

phase, non-sinusoidal, four-wire source. 

 

This receiver can be described as follows: 
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where: 

the equivalent admittances were determined from ( ) ( ) ( ) ( )( )
nnnn YYYY TSRe 3

1 ++= ,  

the unbalanced admittances were determined from [2 eq.(23-25)].  

 

Active power is taken only in one phase and it is equal to ( )  ( )  W.264542
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For a balanced power source, the effective value of three-phase voltage is 

( ) V. 75.3983 2
R == 

n
nUu  

This means that the equivalent conductance is equal to mS. 38.1662e ==
u

PG  

The rms values of the individual three-phase current components are equal to: 
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Thus, the rms value of the three-phase current is equal to: 
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This means that the power factor of this system is equal to: 
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In order to improve the power factor, the compensator parameters should be selected. The first part, 

i.e. the compensator working in the Y topology, is made of susceptance, whose values are determined 

from (3): 
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There are infinitely many possibilities to implement such a compensator. Physical implementation 

requires a different terminal structure in each phase.  

The physical implementation of these admittances are reactance terminals whose structures and 

parameters are: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Physical realization of the Y 

compensator, based on phase susceptances. 

The next step is to make a transfiguration of the system from the topology of the star, built from 

parallel connection of the receiver and compensator Y to the topology of the triangle. The parameters 

of the equivalent circuit, is determined from (4), hence: 
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where: 

the equivalent admittances has determined from (5),  

the unbalanced admittances has determined from (6),  

 

The susceptances of the  compensator are determined from (7): 
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The implementation of the susceptances is the LC ladder system, whose parameters have been 

determined analogically to the previous segment of the compensator. The following is one of the 

possible implementations of the system. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Physical realization of the  

compensator, based on phase susceptances. 

The two-fold Y and  compensation resets the reactive current ir and the unbalanced current iu. The 

scattered current is still remains, which causes the power factor not to equal to one. From (2) the 

following value is obtained: 
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Any further improvement in the power factor consists in reducing the influence of the scattered 

current is. This is only possible by performing serial compensation. The series compensator leads to 

complete compensation only when the real part of the resultant impedance of the receiver along with 

the Y and  compensators does not depend on the frequency. In addition to this, the construction of 

the third compensator segment, working in series in each phase is economically unprofitable.  

4. Conclusions 

The reactive compensation in three-phase four-wire systems is more complex than compensation in 

three-wire systems. Two segments of the reactive compensator are required to reduce the power factor. 

The paper presents the basics of reactive compensation of linear loads with constant parameters. In 
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fact, these parameters change over time. In this situation, an adaptive compensator may be needed. 

However, the discussion about such adaptive compensation goes beyond the scope of this article.  

A source with zero internal impedance was considered. It is a simplification that may be 

unacceptable in real systems. Compensation with real source remains a problem which must be 

considered in future articles.  
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