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We report results of the theoretical study of the dynamic properties of distributed Bragg
reflector (DBR) lasers subject to an external optical feedback provided by a long-
distance mirror. We adapt the Lang-Kobayashi (LK) model to the considered device.
The adapted parameters Henry factor, photon life time, feedback strength, and modal
group index entering the LK model depend strongly on the lasing wavelength of the
solitary laser. The stationary states computed by the full and adapted LK models show
good agreement. We consider the external reflectivity and phase and the solitary laser
wavelength as a bifurcation parameters. Thus, we investigate the impact of these pa-
rameters on the stability of the stationary states.
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1. INTRODUCTION

During recent years high-power distributed Bragg reflector (DBR) lasers have
received more and more interest since they enable single longitudinal mode operation
with a small spectral linewidth. Such devices are requested by a number of emerging
applications such as second harmonic generation, spectroscopy, quantum metrology,
and optical communication [1–3]. However, within complex experimental setups
unwanted optical feedback can appear either from interconnections or from external
mirrors. It is well known that an external feedback affects the laser emission includ-
ing coherence collapse, emission frequency shift, changes in the spectral line width
etc. [4–6]. Recently, the impact of weak feedback on high-power DBR tapered and
distributed feedback (DFB) lasers was reported in [7] and [8]. The measured data
for the induced frequency shift in dependence on the external cavity length were an-
alyzed on the basis of the classical Lang–Kobayashi (LK) equations [9] strictly valid
only for Fabry-Perot (FP) lasers. The influence of strong optical feedback on the
emission behavior of DBR ridge waveguide (RW) lasers emitting at 1120 nm having
different cavity lengths and facet reflectivities was investigated in [10].

In this paper we derive the modified parameters entering the LK equations valid
for DBR lasers having a frequency-dependent Bragg reflector. This allows an inves-
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tigation of the influence of internal parameters such as the sectional lengths and the
detuning with respect to the Bragg wavelength on the behavior of the DBR laser sub-
ject to weak external feedback. The configuration considered is shown in Fig. 1a.
The emission from the facet of the active section of the DBR laser at z = 0 is injected
to a simple mirror with constant power reflectivity R and phase ϕ in a distance L
from the facet and fed back from there. Fig. 1b shows the spectrum of the intensity
reflectivity of the Bragg grating for the set of parameters shown in Table 1.

Table 1.

Parameters of the standard configuration

Symbol Description Unit Value

solitary laser:
λl laser wavelength m 1.12 ·10−6

ng group refractive index 3.6
DBR section:

Lκ length m 1 ·10−3

ακ optical waveguide losses m−1 200
λκ central wavelength m 1.12 ·10−6

κ coupling coefficient m−1 7.5 ·102

φκ phase of coupling coefficient 0
facet reflectivity 0
active section:

La length m (0.5, 1, 2, 3) ·10−3

β0 wavevector m−1 0
∆neff index detuning −2.1798 ·10−4

αa optical waveguide loss m−1 200
αH Henry factor 1.2
Ra facet reflectivity 0.1
ϕr phase shift rad 0
ϕt phase shift rad 0
τN effective carrier lifetime s 1.67 ·10−9

feedback part:
L optical length m 0.6
R reflectivity 10−6 . . .10−3

ϕ round-trip phase shift rad −π . . .π

The paper is structured as follows. In Sec. 2 the theoretical model is described.
The dynamical equations of the adjusted LK model for DBR lasers with feedback
are derived in Sec. 3. In Sec. 4 the stationary states computed with the LK model
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Fig. 1 – a) Scheme of the setup, b) power reflection spectrum of the Bragg reflector of the laser.

and the full model are compared. An analysis of the stability of the stationary states
is presented in Sec. 5. Finally, summary and conclusions are given in Sec. 6.

2. MODEL AND EQUATIONS

Under continuous wave (CW) operation, the carrier densities as well as the
optical power in the DBR laser are constant in time. Within the whole laser, two
counter propagating waves of the following form are circulating

E(z, t) =
[
E+(z, t,ωs)e−iβ0z +E−(z, t,ωs)eiβ0z

]
eiωst, (1)

where β0 = nπ/Λ with order n and period Λ of the grating in the DBR.
In a stationary state, the laser emits and receives back monochromatic light of

frequency ωs with the respective constant in time amplitudes E+(ωs)≡E+(0, t,ωs)
and E−(ωs)≡E−(0, t,ωs), measured at a reference plane z = 0 just outside the laser
facet. The two amplitudes are related to each other by

E−(ωs) = rf(ωs)E+(ωs) and E+(ωs) = rl(ωs,gs)E−(ωs), (2)

where rf(ωs) is the full reflectivity of the whole feedback arm seen from left at z = 0.
Likewise, rl(ωs,gs) denotes the full reflectivity of the DBR laser (active + DBR
sections) for light coming from the reference plane at frequency ωs and gain gs of
the stationary state. Note that our reference plane is located outside of the laser.
Nonzero amplitudes require the validity of the round-trip condition

rf(ωs) = q(ωs,gs), with q(ωs,gs) := r−1
l (ωs,gs), (3)

which solution yields ωs and gs of the stationary state. Without feedback, q must
become zero.

In the next step we construct the reflectivities entering (2). The reflectivity from
the right hand side of a grating is [11]

rκ =
−iκ+ sin(γLκ)

γ

cos(γLκ)+ i∆β sin(γLκ)
γ

with γ =
√

(∆βκ)2−κ+κ−, (4)
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where Lκ is the length of the grating and

∆βκ(λ) = βκ(λ)−β0, βκ =
2π

λ
nκ(λ)− i

2
ακ, κ± = κe∓2πiϕκ . (5)

Here κ is the coupling coefficient of the grating, nκ is the modal index of the internal
waveguide, ακ is the background absorption coefficient of the guided waves in the
grating section, and ϕκ is a phase shift depending on the relative position of the
grating with respect to the right facet of the DBR. We introduce the so-called Bragg
wavelength λκ at the maximum of the reflection spectrum of the grating (center of
the stop band) where

Re{βκ(λκ)}= β0 (6)
holds. Our DBR is relatively long and has a small κ. Hence, the width of its dominat-
ing reflection spectrum (stop band) - where the lasing modes are residing - is small.
Within its range we can use the linearization

βκ(λ) = β0−
i

2
ακ−

2π

λ2
κ

ng∆λ (7)

where ng is the modal group index in both DBR and active sections and ∆λ = λ−λκ

is the wavelength relative to the Bragg wavelength. For transforming to the LK
equations, it is better to use circular frequencies instead of wavelengths. The central
frequency is ωκ = 2πc/λκ and the relative frequency is ∆ω = −ωκ∆λ/λκ. With
these quantities we have

βκ(ω) = β0−
i

2
ακ +

∆ω

vg
, (8)

where the modal group velocity is vg = c/ng.
Now we introduce the round-trip propagator of the active section P(ω,g) =

rκ(ω)r+ exp[−2iβa(ω,g)La] and the reflectivities of the facet at the active section
r± =

√
Rae

−iϕ± with ϕ+ = π +ϕr and ϕ− = −ϕr +2ϕt [12, 13]. They agree with
the slowly-varying-amplitude reflectivites because we set z = 0 at this facet. Ra is
the corresponding power reflectivity. The propagation constant of the active section
is modeled as

βa(ω,g) = β0 +
2π

λκ
∆neff−

i

2
αa +(1+ iαH)

i

2
g +

∆ω

vg
. (9)

The possible index detuning ∆neff between active and DBR sections may be due to
current induced heating of the active section. αa,H is the Henry-factor of the active
waveguide. g is the modal gain, and αa is the background absorption in the active
section. The right hand side (rhs) of (3) reads then

q(ω,g) =
(

Ra

r-

)
1−P(ω,g)

Ra−P(ω,g)
. (10)
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Without feedback P(ωl,gl) = 1 must hold. Here, the frequency ωl of the solitary
laser is treated as a parameter, which is moved across the stop band of the DBR
section. The solution of |P(ωl,gl)|= 1 yields the threshold condition

gl = αa−
1
La

ln(|rκ(ωl)|
√

Ra). (11)

Lasing at ωl requires also that argP(ωl,gl) is an integer multiple of 2π. For a given
laser, this selects a countable set of frequencies, the longitudinal modes, which have
to be determined by iterations. In our case of a given ωl, this phase condition selects
a countable set of different lasers, namely those fulfilling[(

4π

λκ
∆neff−αHgl +

2∆ωl

vg
+

2π

Λ

)
La−arg(rκ(ωl)r+)

]
mod 2π = 0. (12)

So, by setting ωl, we can determine the corresponding threshold gain gl and a related
index detuning ∆neff analytically with no iterations.

The reflectivity of the feedback part has the simple form

rf (ω) =
√

Re−i(ϕ+ωτ). (13)

The ϕ contains a possible phase shift of the external mirror and also all phase shifts
due to the coupling optics within the feedback path. Accordingly does the delay τ
and the reflectivity R of the feedback arm. In the next Section we analyze the stability
of CW operation in the framework of the LK equations, which are restricted to weak
feedback. In this case, q(ωs,gs) remains close to its zero at ωs = ωl, gs = gl and can
be linearized. Before doing that, it is useful to insert the derived expressions and to
multiply the round-trip condition (3) with r-/Ra = eiarg(r-)/

√
Ra, yielding√

R/Rae−i(ϕ+ωsτ−arg(r-)) = q̃(ωs,gs), (14)

with q̃(ωs,gs) =
1−P(ωs,gs)

Ra−P(ωs,gs)
(15)

Now the phase of r- belongs to the feedback arm. Since q̃ vanishes at the chosen
longitudinal mode, the linearization is

q̃(ω,g) = ∂ω q̃ · (ω−ωl)+∂g q̃ · (g−gl), (16)

where ∂ω and ∂g means the partial derivative. Inserting (16) into the round-trip con-
dition (14) and dividing by −i∂ω q̃ yields

i(ωs−ωl)−
ṽg

2
(1+ iα̃H)(gs−gl) = ηe−iφQ(ωs), (17)

ṽg = 2Im(∂g q̃/∂ω q̃), α̃H =−Re(∂g q̃/∂ω q̃)
Im(∂g q̃/∂ω q̃)

, (18)
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Fig. 2 – The dependence of scaled parameters entering the LK equations on the detuning of the mode
of the solitary laser: a) Henry factor α̃H, b) photon life time τ̃p, c) feedback strength η̃, and d) group

index ñg. Solid lines: DBR laser, dotted lines: FP laser (see text).

and the rescaled feedback parameters

η̃ =

√
R/Ra

|∂ωs q̃|
, (19)

φ = ϕ+arg(∂ωs q̃)−
π

2
−arg(r−), (20)

Q(ωs) = e−iωsτ , τ = 2L/c. (21)

The rescaled photon life time is τ̃p = (ṽggl)−1. The rescaled parameters distinguished
with a tilde depend on the relative wavelength ∆λl = λl−λκ, the so called detuning
of the solitary laser wavelength. On the other hand, these parameters also depend on
the structural parameters such as coupling coefficient, length of DBR, active sections
etc.

Let us consider what is predicted to happen, when we vary the solitary mode
detuning and calculate α̃H , τ̃p, η̃, and ñg = c/ṽg. The results are shown in Fig. 2
for different lengths La of the active section. The dotted lines are the results for
a FP laser where the DBR is replaced by a mirror a z = −La. The mirror has a
frequency-independent reflectivity which value is given by the peak reflectivity of
the Bragg reflector of 0.34 (see Fig. 1b). The shorter the length of the active section,
the larger the deviation to the dotted lines and the larger is the variation across the
stop band. A large variation can be observed for the rescaled Henry α-factor α̃H . It
is well-known that a higher Henry factor results in a more unstable behavior. It can
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be clearly seen, that for positive detuning where α̃H is reduced below the material
value, the laser should be more immune to feedback, whereas for negative detuning
strong instabilities are to be expected.

3. THE DYNAMICAL EQUATIONS

It is well known that the stationary state is locally stable if the system returns
to it upon all sufficiently small deviations. When changing a parameter, this decay
can become slower and even turn into the existence of arbitrarily small deviations
growing with time, which necessarily leads to a self-sustaining dynamics or causes
a transition to another stationary state that is stable. The bifurcation analysis of sta-
tionary states requires dynamical equations for the temporal evolution in their neigh-
borhood. Dynamical equations for the slowly varying amplitudes E+(t) and E−(t)
are generally obtained by Fourier transforming the feedback equations (2) into time
domain, treating the gain adiabatically as a parameter. The adiabatic approximation
for the gain is uncritical because the build-up time of the DBR reflectivity of only a
few ps is much smaller than the characteristic time for gain changes. Here and in the
following we use the same letter for a function in time domain and in frequency do-
main because it is always clear from context what is meant. Additionally we denote
E+(t) simply as E(t).

Before Fourier transforming, we make the following approximations for the
two reflection coefficients. First, q = r−1

l is linearized at its zero in the sense of the
weak-feedback approximation introduced in the last Section. The Fourier transform
of iωE+(ω) yields the term Ė(t) in (22) below. The other terms come from the sub-
stitutions ṽg(g(t)−gl)/2 = N(t)/τ̃p and E−(t) =

√
Re−iϕE(t−τ) with the dimen-

sionless inversion N(t) = g(t)−gl

2gl
, and the photon life time τ̃p = (ṽggl)−1. Adding

furthermore the standard rate equation for the dimensionless inversion N(t) with the
unsaturated inversion N0 = 0.5(I− Ith)/(Ith− Itr) (Ith threshold current, Itr trans-
parency current) and the carrier life time τN and scaling the amplitudes appropriately,
the full set of dynamical equation is

Ė(t) =
[
iωl +(1+ iα̃H)

N(t)
τ̃p

]
E(t)+ηe−iφE(t− τ) (22)

Ṅ(t) =
1
τN

[
N0−N(t)− (1+2N(t))|E(t)|2

]
. (23)

All notations and transformations are the same as in [14], with replacing αH,vg, τp,
and η by the rescaled versions (18)-(21).

This system represents the well known standard LK equations [9] for a semi-
conductor laser subject to delayed optical feedback. They have been widely studied
and one could think there is nothing new because it is easy just to take over these re-
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Fig. 3 – Stationary gain versus relative stationary wavelength of the LK (black line) and full (red dots)
models for different feedback reflectivities. a) R = 10−6, b) R = 10−4, c) R = 10−3. Length of

active section La = 1.0 mm. Other parameters are as in Table 1.

sults to the present case. However, the situation is a bit more complicated. We want
to study the stability of solitary laser modes in dependence on their spectral position
∆λl = λl −λκ relative to the center of the DBR stop band for fixed other parame-
ters. Therefore, we redo the bifurcation analysis for this parameter path. Since the
LK equations are delay-differential equations (DDE), we apply the software DDE-
biftool [15] to these purposes. It allows to compute branches of stationary solutions
and to follow their bifurcations in the parameter space. Furthermore, the periodic so-
lutions can be continued starting from previously computed Hopf bifurcations. The
mathematical background, in particular in view of the rotational symmetry of laser
DDEs, is described in detail in Refs. [4, 5].

4. VALIDATION OF THE MODEL

In what follows, we consider the stationary lasing states called external cav-
ity modes (ECMs), which are either solutions of (3) (full model) or rotating wave
solutions of the LK model (22)-(23). It is well known, that for the weak optical
feedback the ECMs are located on ellipses in the plane gs−∆λs of mode gain and
relative mode wavelength. Here we compare the ECMs computed by employing the
LK model with rescaled parameters and the full model. Figure 3 shows the ellipses
for different feedback reflectivities. For an external reflectivity of R = 10−6, there is
an excellent agreement between both models and the ellipses overlap very well. An
increase of the external reflectivity to R = 10−4 and further to R = 10−3 results in
rising deviations between the models, although the agreement is still reasonable.

Figure 4 shows the dependence of the stationary gain and the relative stationary
wavelength ∆λs = λs−λκ on the detuning ∆λl and the external phase ϕ for R =
10−4. For both dependencies, the phenomena of bistability and multistability can
be clearly seen. The agreement between both models is again very good. Thus, we
conclude that for an external reflectivity of R < 10−3 we can successfully apply the
LK model to our setup shown in Fig. 1.
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Fig. 4 – Relative stationary wavelength a), c) and stationary gain b), d) versus the relative wavelength
of the solitary laser a), b) and the external phase c), d), respectively, for the LK (black line) and full

(red dots) models. The length of active section La = 1.0 mm and the external reflectivity R = 10−4.
The other parameters are the same as in Fig. 3.

5. STABILITY ANALYSIS OF STATIONARY STATES

Here we use DDE-biftool [15] to analyze the stability of the ECMs based on a
continuation method. Figure 5 shows the ellipses for R = 10−4 for different lengths
La of the active section, resulting in different values of gl and hence different sizes
of the ellipses. The gray lines show a saddle-node (SN) bifurcation for any values of
the external reflectivity R. The intersection points between this line and the ellipses
shown by gray bullets represent SN bifurcations for R = 10−4, separating ECMs
called ‘anti-modes’ (red lines).

DDE-biftool allows to find Hopf bifurations marked by a black square in Fig.
5 separating stable (green line) and unstable (blue line) ECMs. It can be clearly seen
that the instability region (blue line) decreases with increasing La and disappears for
La = 3 mm.

Figure 6 shows Hopf lines separating stable regions from unstable ones in the
plane of two device parameters, namely the external reflectivity R and the external
phase ϕ, for the same lengths as in 5. Note, that the other Hopf lines obtained by
a repetition with a period of 2π are not shown. This figure confirms the results of
previous findings [16] and also those of Ref. [17] where a semi-analytical model
was used. The minimum external reflectivity leading to a Hopf bifurcation for some
external phase rises with increasing La. A laser with a long active section is more
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Fig. 5 – Stationary gain versus relative stationary wavelength for external reflectivity of R = 10−4,
detuning ∆λl = 0 and different values of the length of the active section. a) Itr = 0.006523 A,

Ith = 0.019 A, I = 0.04379 A, b) Itr = 0.013 A, Ith = 0.0262 A, I = 0.0524 A, c)
Itr = 0.03914 A, Ith = 0.05511 A, I = 0.0868 A. Solid green line–stable stationary states. Blue

line–unstable stationary states. Square–Hopf bifurcation. Gray bullet–saddle node bifurcation (SN)
for R = 10−4. Gray line–saddle node bifurcation for any reflectivity.

Fig. 6 – Hopf bifurcation in the plane of two parameters (external reflectivity R - external phase ϕ) for
different lengths of the active section. The other parameters are the same as in Fig. 5.

prone to feedback than that with a short one.
Figure 7 shows the dependence of the relative stationary mode wavelength ∆λs

on the detuning ∆λl of the solitary mode wavelength for La = 1 mm. The right
column in Fig. 7 contains magnified views of areas A, B, and C, respectively. For
positive detuning (area A) there are only SM bifurcations but no Hopf bifurcation
and hence only antimodes but no unstable ECMs exist. However, one can observe
a bistable behavior. The analysis of area B (zero detuning) shows that the stable
region (green line) is terminated by a Hopf bifurcation, and a region with instabilities
appears. Moreover, for negative detuning (area C) the region of instabilities becomes
wider, and multistability appears. Thus, we conclude that the detuning of the solitary
mode wavelength influences drastically the stability of the stationary states. The
root cause is the dependence of the scaled parameters entering the LK equations, in
particular the Henry factor, on ∆λl as shown in Fig. 2.
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Fig. 7 – Relative stationary wavelength ∆λs versus solitary detuning ∆λl for La = 1 mm, R = 10−4,
and ϕ = 0. Right column: The areas A, B, and C zoomed. The symbols and line colors are the same

as in Fig. 5.

6. CONCLUSION

We have carried out theoretical investigations of the behavior of a distributed
Bragg laser (DBR) laser subject to external feedback. The case of a long feedback
branch is considered. A full model and an adapted Lang-Kobayashi model have been
used to compute the stationary states. A good agreement for external reflectivities
smaller than 10−3 has been obtained. The adapted Henry factor, photon life time,
feedback strength, and modal group index entering the LK model strongly depend
on the detuning between the lasing wavelength and the Bragg wavelength. We have
performed a bifurcation analysis considering the stability of the stationary states, i.e.
the external cavity modes. The stability is lost by Hopf bifurcations. We have found
that DBR lasers with short active sections are characterized by wider unstable regions
compared to those of long ones. We ascribe the existence of a wide region of instabil-
ity for negative detuning to the high values of the adapted Henry factor characteristic
for this region. A positive detuning implies a reduction of the unstable region (low
alpha factor), even a disappearance for higher positive detuning. We believe that our
work provides a good basis for future studies and, in particular, provides some hints
for more detailed experimental investigations of DBR lasers and their applications as
a stable single mode source of light.
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thermoelectric devices with high efficiency.
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11. H. Wenzel, R. Güther, A. Shams-Zadeh-Amiri, and P. Bienstman, IEEE J. Quantum Electron.

42(1), 64 (2005).
12. L. A. Coldren et al. Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, Inc.,

Hoboken, New Jersey (2012).
13. M. A. Dupertuis, B. Acklin, and M. Proctor, J. Opt. Soc. Am. A 11(3), 1167 (1994).
14. V. Tronciu, H. Wenzel, and H. J. Wünsche, IEEE J. Quantum Electron. 53(1), 2200109 (2017).
15. J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey, and D. Roose, DDE-BIFTOOL v.3.1 Manual

- Bifurcation analysis of delay differential equations.
16. G. Morthier, IEEE Photonics Journal 13(4), 1500205 (2021).
17. V. Tronciu, N. Werner, H. Wenzel, and H. J. Wünsche, IEEE J. Quantum Electron. 57(5), 2100107

(2021).

http://www.infim.ro/rrp submitted to Romanian Reports in Physics ISSN: 1221-1451


