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Apportionment “Population paradox” and the

Paradox of population influence

Ion Bolun

Abstract

A new approach is grounded with respect to the population
paradox (PPr). Further on, the paradox of population influence
(PPi) is proposed. It is proven that Hamilton method is immune
to the PPi, and that d’Hondt, Sainte-Laguë, Huntington-Hill and
Adapted Sainte-Laguë methods – are not. By computer simula-
tion, the percentage of non-immunity of Hamilton method to
PPr, and the one of d’Hondt, Sainte-Laguë, Huntington-Hill and
Adapted Sainte-Laguë divisor methods to PPi, is estimated. For
a large range of initial data, this percentage, in the case of the
four investigated divisor methods, does not exceed, on average,
0.6-0.8%, that is one case per a total of 120-170 cases.
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1 Introduction

The population paradox (PPr) was identified and defined in the early
1900s in the case of Hamilton apportionment method [1-3]. Initially,
the apportionment of seats in the US House of Representatives at pop-
ulation growth was found to be inappropriate. Later on, the paradox
became one of the key restrictions in the apportionment of elective bod-
ies’ mandates among parties based on voting results, and sometimes –
in the distribution of discrete identical goods among beneficiaries.
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In this paper, the reasonable area of coverage by PPr of multiple
situations is investigated and a new approach, covering all possible sit-
uations, is proposed. In addition, the frequency of non-immunity to
population paradox (in its traditional formulation and in the proposed
one) of some well-known apportionment methods is estimated by com-
puter simulation.

2 Aspects of Population paradox

There are many definitions of the Population paradox, but their essence
is usually the same, for example:

1) “the population paradox occurs when state A loses a seat to state
B even though the population of A grew at a higher rate than
the population of B” [3];

2) “The population paradox occurs when, based on updated popula-
tion figures, a reapportionment of a fixed number of seats causes
a state to lose a seat to another state, although the percent in-
crease in the population of the state that loses the seat is bigger
than the percent increase in the population of the state that gains
the seat” [4].

Thus, if Hamilton method [2, 3] had been used in 1901 to reallocate
386 seats in the US Congress House of Representatives, Virginia, at a
higher rate of population increase than that of Maine, would have lost
a seat, and Maine would have won a seat (Table 1) [5].

On the basis of formulations from [3, 4], the Population paradox
is formalized in Definition 1, where for the first apportionment the
following notations are used:

M – total number of seats;

n – number of states. Consider n ≤ M ;

V – total population for n states;

Vi – population of state i, i = 1, n;

xi – number of seats to be allocated to state i, i = 1, n.
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Table 1. The Population paradox for states Maine and Virginia [5]

State Population
Population
growth

Seats

1900 1901 rate,%
abs.,
pers.

1900 1901

Maine 694466 699114 1.0067 4648 3 4

Virginia 1854184 1873951 1.0107 19767 10 9

For the second apportionment, here and further on, the nominated
and other notations will be completed with the apostrophe symbol (′),
for example V ′ for V .

Definition 1. The Population paradox (PPr) occurs, if at M ′ = M ,
n′ = n and

V ′

k/Vk > V ′

j/Vj (1)

the following relations take place

x′k = xk − 1, (2)

x′j = xj + 1. (3)

In this definition, there are doubts about the correctness of condi-
tion (1). Let’s consider Example 1.

Example 1. on Population paradox according to Definition 1 when
the Hamilton method is applied. Let M = 100, n = 4 and, for the first
apportionment, V1 = 50000, V2 = 1400, V3 = 1300 and V4 = 800, and
for the second one: V ′

1
= 50800, V ′

2
= 1421, V ′

3
= 1326 and V ′

4
= 816.

Then for the first apportionment we have Q = (50000 + 1400 + 1300 +
800)/100 = 535, and for the second one Q′ = (50800 + 1421 + 1326 +
816)/100 = 543.63. Here Q = V/M is the standard divisor, known
also as Hare quota [2, 7]. The results of other calculations are shown
in Table 2.

In Table 2 and further on, the notation Ri = Vi/Q is used, where
Ri is the standard quota [3].

23



Ion Bolun

Table 2. Results of calculations to Example 1

State i Q = 535 Q′ = 543.16
Vi Ri xi V ′

i
R′

i
x′

i
V ′

i
/Vi V ′

i
−Vi

1 50000 93.46 93 50800 93.53 94 1.016 800
2 1400 2.62 3 1400 2.58 3 1 0
3 1300 2.43 2 1300 2.39 2 1 0
4 800 1.50 2 816 1.50 1 1.020 16
Total 53500 100 54316 100

According to Table 2, the Hamilton solution for the second appor-
tionment is to withdraw a seat from state 4 and reallocate it to state
1, in spite of the fact that the population growth rate of state 4 is 2%,
while that of state 1 is 1.6%, i.e. smaller. Thus, according to Definition
1, the population paradox (PPr) would occur.

At the same time, one can mention that, in absolute terms, the pop-
ulation of state 4 has increased by only 16 inhabitants, while that of
state 1 — by 800 inhabitants, that is, 800/16 = 50 times more. More-
over, we have 800 > Q′ = 543.16, that is, at a proportional allocation
of seats, more than one seat would correspond to the new population
of state 1, while much less than one seat (16 << Q′ = 543.16) – to the
new population of state 4. Under such conditions, one cannot affirm
that a paradox occurs. Therefore, not in all cases Definition 1 specifies
situations of population paradox. Respectively, it would be appropriate
to redefine the paradox situations implied by changes in the number of
inhabitants.

3 Redefining the Population paradox

At a first glance, there are several aspects and, respectively, alterna-
tives of comparison of two consecutive apportionments with a view to
identifying situations in which population paradox occurs. In addition
to the use of “population rate deviation” as a comparison criterion from
one apportionment to the next one (Definition 1), the “population ab-
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solute deviation” and the “absolute deviation of population influence
power” are also discussed under this section as criteria.

3.1 Population absolute deviation as criterion

For the comparing of two consecutive apportionments, the decrease
(x′k − xk < 0, see (2)) or the increase (x′j − xj > 0, see (3)), for each
particular state, of the number of seats xi from one apportionment to
the next one, are used. At the same time, because the distribution
of seats among states must be made proportionately to the number of
inhabitants (Vi, i = 1, n, and respectively, V ′

i , i = 1, n), it should be
that the absolute increase (decrease) of the number of seats x′i − xi be
correlated with the absolute increase (decrease) of population V ′

i − Vi,
and not with its rate V ′

i /Vi. That is, when defining the population
paradox, instead of condition (1) it would be more appropriate to use
the following one:

V ′

k − Vk > V ′

i − Vi. (4)

Possibly, it is this approach that is taken into account in Exam-
ple 2 and the population paradox definition from [6]: “The population
paradox occurs when one state loses a seat and another state gains a
seat, even though the first state’s population increased more than the
second state’s population”.

Example 2. [6] Let M = 25, n = 3 (states A, B and C) and, for
the first apportionment, VA = 13, VB = 12 and VC = 112, and for
the second one: V ′

A = 14, V ′

B = 12 and V ′

C = 114. The results of
some calculations, when applying the Hamilton method, are shown in
Table 3.

Data of Table 3 show that state A, the population of which increased
by 1 mil, gains a seat and state C, with a 2 mil population increase,
loses a seat. Based on these results, in [6] it is concluded that the
Population paradox occurs. But this example is not one of Population
paradox in sense of Definition 1, given that the population growth rate
is of 1.077 in case of state A and of 1.018 – in the case of state C.
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Table 3. Calculations for the example from [6], Hamilton method

State
Population,

mil

Population
growth

Standard
quota

Seats

App.
I

App.
2

Rate Abs.
App.
I

App.
2

App.
I

App.
2

A 13 14 1.077 1 2.37 2.50 2 3

B 12 12 1 0 2.19 2.14 2 2

C 112 114 1.018 2 20.44 20.36 21 20

Total 137 140 25 25 25 25

Under condition (4) instead of condition (1), the term of “absolute
deviation population paradox” or, shorter, “Absolute population para-
dox” (PPa) will be used in this paper. Respectively, instead of the
traditional term of “Population paradox” (in the meaning of Definition
1), the term “rate deviation population paradox” or, shorter, “Rate
population paradox” (PPr) will be used.

Thus, for PPa we have the following definition:

Definition 2. The Absolute population paradox occurs, if at M ′ = M ,
n′ = n and at constraint (4) the relations (2) and (3) take place.

The correlation between conditions (1) and (4) of population para-
dox according to Definition 1 (PPr) and, respectively, Definition 2
(PPa), is of interest.

Statement 1. The conditions of Definition 1 supplemented with those
of

Vk ≥ Vj , (5)

fall under the conditions of Definition 2.

Indeed, it is sufficient to prove that, if relations (1) and (5) take
place, then relation (4) also occurs. Let the conditions (1) and (5)
occur. From (1) we have V ′

k/Vk − 1 > V ′

j /Vj − 1, i.e. (V ′

k − Vk)/Vk >
(V ′

j − Vj)/Vj or (V ′

k − Vk) > (V ′

j − Vj)Vk/Vj . The last inequality, if
relation (5) takes place, implies that condition (4) occurs. �
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Considering the data of Table 1, it can be easily seen that the para-
dox regarding the apportionment of seats between states of Virginia
and Maine in 1990 and 1991 falls under both conditions of Statement
1 and those of Definition 2.

It can be expected, at the same time, that there are also cases
of compliance with the conditions of Definition 2 and non-compliance
with the conditions of Statement 1.

Statement 2. The area of situations, covered by conditions of Defini-
tion 2, is larger than the one covered by conditions of Statement 1.

Indeed, relations (2) and (3) are common to Definition 2 and State-
ment 1, and, according to Statement 1, the conditions (1) and (5) imply
the inequality (4). H

It remains to prove that there are also other situations of PPa
covered by conditions (2)-(4) but not covered by inequalities (1)-(3),
(5); i.e. not in all cases when inequalities (2)-(4) take place, relations
(1)-(3), (5) occur as well. One of such cases is determined by conditions
(2)-(4) and inequalities

Vk > Vj , (6)

V ′

k/Vk < V ′

j /Vj , (7)

the last inequality being an opposite of relation (1). It is sufficient to
show that this case is a real one.

The compatibility of relations (4)-(6) is evident; also, because of
(6), relation (4) can be complied with even under condition (7). As to
inequalities (2) and (3), it is easier to comply with them in conditions
(6) and (7) than in conditions (1) and (5). �

Consequence 1. The conditions of Definition 2 cannot be replaced by
those of Statement 1.

Indeed, according to Statement 2 the conditions of Definition 2 are
larger than those of Statement 1. �

The veracity of Statement 2 is confirmed also by Example 3.
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Table 4. Results of calculations to Example 3

State i Q = 76.5 Q′ = 78.52
Vi Ri

xi V ′

i
R′

i
x′

i
V ′

i
/Vi V ′

i
−Vi

1 3400 44.44 45 3502 44.60 44 1.03 102

2 2000 26.14 26 2100 26.74 27 1.05 100
3 1150 15.03 15 1150 14.65 15 1 0
4 1100 14.38 14 1100 14.01 14 1 0

Total 7650 100 7852 100

Example 3. on the Absolute population paradox when applying the
Hamilton method. Let M = 100, n = 4 and the first apportionment be
characterized by data V1 = 3400, V2 = 2000, V3 = 1150, V4 = 1100,
and the second one by: V ′

1
= 3502, V ′

2
= 2100, V ′

3
= 1150, V ′

4
= 1100.

Then for the first apportionment we have Q = (3400 + 2000 + 1150 +
1100)/100 = 76.5, and for the second one Q′ = (3502 + 2100 + 1150 +
1100)/100 = 78.52. The obtained results are shown in Table 4.

In Example 3, for states 3 and 4, the population does not change
from the first apportionment to the second one (1150 and 1100, respec-
tively); nor changes the number of mandates. But for states 1 and 2
we have: V ′

1
− V1 = 3502 − 3400 = 102; V ′

2
− V2 = 2100 − 2000 = 100;

V ′

1
/V1 = 3502/3400 = 1.03 and V ′

2
/V2 = 2100/2000 = 1.05. So,

V1 > V2 and V ′

1
/V1 < V ′

2
/V2, i.e. this case is different from the one

of relations (1), (5). At the same time, we have V ′

1
− V1 > V ′

2
− V2,

x′
1
< x1 and x′

2
> x2 and according to Definition 2 a PPa occurs. It

should also be mentioned that, because of V ′

1
/V1 < V ′

2
/V2, x

′

1
< x1 and

x′
2
> x2, the PPr doesn’t occur (see Definition 1).

3.2 Population influence power absolute deviation as cri-

terion

The major shortcoming of the approach based on relation (4) is that
the total number of inhabitants in the two consecutive apportionments,
V and V ′, is usually different, while the number of seats is the same
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(M = M ′). Under such conditions, the power of influence of one inhab-
itant [8] in the two apportionments, r and r′, is different: r = M/V and
r′ = M/V ′. Therefore, the use of the number of inhabitants’ absolute
deviation (V ′

i −Vi) as a criterion is not correct. For each state, the com-
parison should not be based on the number Vi of inhabitants, but on
the legal power of influence of the decisions of the House of Represen-
tatives delegated by the Vi inhabitants [8] Ri = rVi = MVi/V = Vi/Q,
i = 1, n, known also as standard quota. For these reasons, at c = V ′/V ,
further on there are formulated and characterized cases (a), (b) and (c)
-– claimants in defining the population paradox; at a first glance, the
population paradox would occur if:

a) at R′

i ≥ Ri, relation x′i < xi would also occur;

b) at R′

k −Rk > R′

j −Rj , relations (2) and (3) would also occur;

c) at R′

k − xk > R′

j − xj , relations (2) and (3) would also occur.

Case (a) outlines the conditions, for a particular state (i) within the
two apportionments, needed for the population paradox to take place.
In the other two cases, (b) and (c), the identification of population
paradox is based on comparing the characteristics of two states; at the
same time, the respective relations also contain, as further on will be
ascertained, a parameter (c = V ′/V or Q′ = V ′/M) that refers to the
entire apportionment.

The first, out of the two conditions of case (a), reflects the following
situation: if the legal power of influence of state i (Ri), delegated by
its population (Vi), does not decrease, then the power of influence of
this state on the House of Representatives decisions, determined by the
number of seats allocated to it (xi), should not decrease as well. This
condition can also be represented in another form. We have R′

i ≥ Ri,
that is MV ′

i /V
′ ≥ MVi/V , implying V ′

i /V
′ ≥ Vi/V or V ′

i ≥ cVi .

The first condition of case (b) refers to the following situation: if
the increase of the legal power of influence of state k, delegated by its
population in two consecutive apportionments, is greater than the one
of state j, then no seats should be taken from state k to be reallocated
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to state j. This condition can also be represented in another form. We
have R′

k − Rk > R′

j − Rj , that is MV ′

k/V
′ − MVk/V > MV ′

j /V
′ −

MVj/V , implying V V ′

k − V ′Vk > V V ′

j − V ′Vj or V V ′

k − V V ′

j >
V ′Vk − V ′Vj , therefore V ′

k − V ′

j > c(Vk − Vj).
Finally, the essence of the first condition of case (c): if the increase

of the legal power of influence of state k in the House of Representa-
tives, determined by the xk seats assigned to it according to the first
apportionment, is greater than the one of state j, then no seats should
be taken from state k to be reallocated to state j. This condition can
also be represented in another form. We have R′

k − xk > R′

j − xj , that
is MV ′

k/V
′ − xk > MV ′

j /V
′ − xj, implying (V ′

k − V ′

j )/Q
′ > xk − xj or

V ′

k − V ′

j > Q′(xk − xj).
Let’s consider these three cases. When comparing the two appor-

tionments, there can be two approaches:

1) only states whose number of seats has been modified are taken
into account;

2) all states, including those whose number of seats has not changed,
are taken into account.

In this paper, approach 1 (the traditional, well known one, also
used for PPr) is applied.

The advantage of case (a), of the (a) – (c) described above, is that
the paradoxical situation is found in the entire apportionment, inde-
pendently of any particular state. But this case not always specifies a
paradox. For example, it may occur that a seat from state k is taken
over by a state j, the power of influence of which has increased more
than the power of influence of state k. Thus, case (a) would be a para-
dox only if a seat from state k was taken over by a state j, the power
of influence of which has increased less than the one of state k, that is,
only if case (b) occurs. So, case (a) would be a paradox only if case (b)
would take place; given this, it is excluded.

For this reason, only cases (b) and (c) remain. Out of these, only
case (b) fully corresponds to the requirements of population paradox
for reasons described further on. As a basis of comparison regarding the
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first apportionment, the legal power of influence of each state delegated
by its population, and not the one, determined by the number of seats
allocated to state in the first apportionment, should be used. That is,
condition R′

k − Rk > R′

j − Rj should be used and not the R′

k − xk >
R′

j − xj one. The use of xi instead of Ri, if Vi 6= aiQ (which usually
takes place), favors (at xi = ai + 1) or disfavors (at xi = ai) state i.
Also, when using PPr (see Definition 1), the comparison is made with
Vi and not with xi.

In case (b), in order to distinguish it from the already broadly used
term “Population paradox” (see Definition 1) and also from the pro-
posed new term for the last “Paradox of population rate” (PPr), in this
paper the term “paradox of population influence absolute deviation”
or, shorter, “Paradox of population influence” (PPi) will be used.

Thus, for PPi we have the definition below.

Definition 3. The Paradox of population influence occurs, if at M ′ =
M , n′ = n and

V ′

k − V ′

j > V ′(Vk − Vj)/V (8)

the relations (2) and (3) take place.

3.3 Essential comparison of PPr, PPa and PPi ap-

proaches

The comparison by essence of PPr, PPa and PPi approaches regarding
the population paradox can be made based on Definitions 1–3.

Regarding Definition 1 and Definition 2, the latter, as an approach,
is closer to reflecting the conditions of population paradox manifesta-
tion, because it takes into account the absolute deviation of the num-
ber of votes (V ′

i − Vi), which is more appropriate for comparing the
increase/decrease of the number of mandates from one poll to the next
(x′i − xi) than the ratio V ′

i /Vi.

On the other hand, as it is shown in Section 3.2, the deviation
V ′

i − Vi does not take into account the fact that the power of influence
of an inhabitant in the two apportionments, r and r′, differs. On
the contrary, the relation (1), which is equivalent to the R′

k/Rk >
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R′

j/Rj one, takes this fact into account. Indeed: we have Ri = rVi =
MVi/V , implying Vi = V Ri/M , and similarly, V ′

i = R′

iV
′/M . So,

V ′

k/Vk = R′

kV
′/RkV = cR′

k/Rk and, respectively, V ′

j /Vj = cR′

j/Rj ,
Q.E.D. Therefore, from this point of view, Definition 1 better reflects
the conditions of population paradox manifestation.

Thus, as regards Definitions 1 and 2, in one aspect (the power of
influence of an inhabitant) – the PPr approach (Definition 1) is better,
but in another aspect (the absolute deviation) – the PPa approach
(Definition 2) is better. Definition 3 (Paradox of population influence
– PPi) covers both these aspects; by comparison, this one uses pairs of
states, and not separate states, and also for each distinct state i:

1) not the number of inhabitants Vi, but the power of influence of
the elective body decisions Ri, delegated by the population Vi;

2) not the ratio V ′

i /Vi, but, given the reasons mentioned in Section
3.2, the absolute deviation D′

i − Di, suitable for comparing the
increase/decrease of the number of seats xi from one apportion-
ment to the next one.

So, Definition 3 reflects more appropriately the population paradox
manifestation and therefore the PPi approach is the only one that
should be used for this purpose.

Statement 3. At V = V ′, the conditions of Absolute population para-
dox (Definition 2, PPa) and those of Paradox of population influence
(Definition 3, PPi) coincide.

Indeed, from (8), taking into account that V = V ′, we have V ′

k −
V ′

j > V ′(Vk − Vj)/V = Vk − Vj or V ′

k − Vk > V ′

i − Vi, that coincides
with the (4) one. �

4 Immunity of Hamilton method to PPr, PPa

and PPi

For the population paradox within the meaning of Definition 3 (Para-
dox of population influence — PPi), Statement 4 takes place.
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Statement 4. Hamilton method is immune to the Paradox of popula-
tion influence.

Indeed, let’s consider that condition (8) occurs. Taking into account
that Q′ = cQ and Vi = aiQ + ∆Vi, where ai = ⌊Vi/Q⌋, relation (8)
takes the form

a′kQ
′ +∆V ′

k − (a′jQ
′ +∆V ′

j ) > c[akQ+∆Vk − (ajQ+∆Vj)]

or
Q′[a′k − a′j − (ak − aj)] > c(∆Vk −∆Vj) + ∆V ′

j −∆V ′

k. (9)

Obviously, the easiest case for state j to take over a seat from state
k is: xk = ak+1, xj = aj , x

′

k = a′k = ak and x′j = a′j+1 = aj+1, which
can only be if ∆Vk > ∆Vj and ∆V ′

j > ∆V ′

k. Thus, considering that c >
0, we have c(∆Vk−∆Vj)+∆V ′

j−∆V ′

k > 0 and Q′[a′k−a′j−(ak−aj)] = 0,
that is condition (9) doesn’t occur. Thus, conditions (2), (3) and (9)
cannot occur simultaneously and, respectively, neither do conditions
(2), (3) and (8). �

In the context of Statement 1, let’s examine two known examples
of non-immunity of Hamilton method to the PPr, taken from [9, 10].

Example 4. Let M = 11, n = 3, V = 1000 and V ′ = 1100. Other
initial data taken from [9] and the results of calculations using Hamilton
method are shown in Table 5.

Table 5. Results of calculations to Example 4

State Vi V ′

i
xi x′

i
V ′

i
/Vi V ′

i
−Vi R′

i
−Ri PPr/PPa/PPi

A 54 56 0 1 1.037 2 -0.034
Yes/Yes/NoB 243 255 3 2 1.049 12 -0.123

C 703 789 8 8 1.122 86 0.157

Data of Table 5 show that for states A and B the PPr and PPa
paradoxes occur, but the PPi one doesn’t. Even though the population
of states A and B increased, and that of B increased more than that
of A, their influence power (RA and RB) decreased and RB decreased
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more (-0.123) than RA (-0.034). So, the loss of a seat by state B to
state A is not a paradox.

Example 5. Let M = 10, n = 3, V = 10000 and V ′ = 9500. Other
initial data taken from [10] and the results of calculations using Hamil-
ton method are systemized in Table 6.

Table 6. Results of calculations to Example 5

State Vi V ′

i
xi x′

i
V ′

i
/Vi V ′

i
−Vi R′

i
−Ri PPr/PPa/PPi

1 1450 1470 2 1 1.014 20 0.097
Nes/Yes/Yo2 3400 3380 3 4 0.994 -20 0.158

3 5150 4650 5 5 0.903 -500 -0.255

Data of Table 6 show that for states A and B the PPr and PPa
paradoxes occurs, but the PPi one doesn’t. Even though the popula-
tion of state A increased and that of state B decreased, their influence
power (RA and RB) increased, and RB increased more (0.158) than RA

(0.097). So, the loss of a seat by state A to state B is not a paradox.

Although it is not the PPr, but the PPi that adequately portrays the
situations of population paradox (and the Hamilton method is immune
to PPi), the frequency of non-immunity of the Hamilton method to
PPr and PPa is of a certain interest.

For this purpose, the SIMAP application for computer simulation
has been specially developed and used.

The total number of votes for the second poll V ′ is determined as
V ′ = cV . The values V ′

i , i = 1, 2, . . . , n for the second poll are random
sizes determined as V ′

i = piVi, i = 1, 2, . . . , n, with corrections required
to make V ′ = V ′

1
+V ′

2
+ . . .+V ′

n, where pi is a stochastic size of uniform
distribution in the range [(c− 1)(1− d); (c− 1)(1 + d)], c < 2, and d is
a constant. For each variant of initial data (M , n, p and d) here and
further on there was used a sample of 1 million random alternatives.

The character of percentages PPr and PPa dependence on n and
d at M = 101 and p = 0.02 for the Hamilton method (PPr(H) and
PPa(H)) can be seen in Figure 1 and Figure 2. For 6 ≤ M ≤ 501,
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3 ≤ n ≤ 50, 0.02 ≤ p ≤ 0.1 and 0.1 ≤ d ≤ 1, n < M , the relations
0.018% ≤ PPr(H) ≤ 4.66% and 0.077% ≤ PPa(H) ≤ 78.58% occur.

In all cases, for the same values of initial data (M , n, p and d),
the relation PPr(H) < PPa(H) occurs; also the difference PPa(H) −
PPr(H), at 6 ≤ M ≤ 501, 2 ≤ n ≤ 50, 0.02 ≤ p ≤ 0.1 and 0.1 ≤ d ≤ 1,
n < M , is increasing with the increase of M , p and d and, in most cases,
with the increase of n, but the ratio PPa(H)/PPr(H) is decreasing on
n and d (Figure 3).

Figure 1. Dependence of PPr on n and d for Hamilton method

5 The non-immunity of d’Hondt, Sainte-Laguë,

Huntington-Hill and Adapted Sainte-Laguë

methods to the Paradox of population influ-

ence

The well-known d’Hondt, Sainte-Laguë, Huntington-Hill and Adapted
Sainte-Laguë methods [2, 3, 11] are not immune to the PPi paradox.
Examples 6–9 for each of the four methods are done below.

Example 6. Let M = 101, n = 5, V = 10640 and V ′ = 10562. Other
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Figure 2. Dependence of PPa on n and d for Hamilton method

Figure 3. Dependence of PPa/PPr on n and d for Hamilton method
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initial data and the results of calculations using the d’Hondt method
are systemized in Table 7.

Table 7. Results of calculations to Example 6

State Vi V ′

i
xi x′

i
V ′

i
/Vi V ′

i
−Vi R′

i
−Ri PPr/PPa/PPi

A 9900 9800 94 95 0.990 -100 -0.262

No/Yes/Yes
B 210 220 2 2 1.048 10 -0.110
C 210 220 2 2 1.048 10 -0.110
D 210 220 2 2 1.048 10 -0.110
E 110 102 1 0 0.927 -8 -0.069

Data of Table 7 show that for states A and E the PPi paradox
occurs. Even though the power of influence of states A and E (RA

and RE) decreased, and notwithstanding the fact that the power of
influence of state A decreased more than that of state E (RE − R′

E =
0.069 < 0.262 = RA−R′

A), state E lost a seat in favor of state A. To be
mentioned that, for this particular example, a similar situation occurs
in relation with criterion V ′

i − Vi (see Table 7).

Example 7. Let M = 101, n = 5, V = 8800 and V ′ = 8873. Other
initial data and the results of calculations using Sainte-Laguë method
are systemized in Table 8.

Table 8. Results of calculations to Example 7

State Vi V ′

i
xi x′

i
V ′

i
/Vi V ′

i
−Vi R′

i
−Ri PPr/PPa/PPi

A 8300 8230 94 95 0.992 -70 -1.581

No/Yes/Yes
B 150 200 2 2 1.333 50 0.555
C 150 200 2 2 1.333 50 0.555
D 150 200 2 2 1.333 50 0.555
E 50 43 1 0 0.860 -7 -0.084
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Data of Table 8 show that for states A and E the PPi paradox
occurs. Even though the influence power (RA and RE) of states A and
E decreased, and those of state A decreased more than those of state E
(RE −R′

E = 0.084 < 1.581 = RA −R′

A), state E lost a seat to state A.
To mention that for this example a similar situation is with criterion
V ′

i − Vi (see Table 8).

Example 8. Let M = 101, n = 5, V = 8675 and V ′ = 8720. Other
initial data and the results of calculations using Huntington-Hill method
are systemized in Table 9.

Table 9. Results of calculations to Example 8

State Vi V ′

i
xi x′

i
V ′

i
/Vi V ′

i
−Vi R′

i
−Ri PPr/PPa/PPi

A 8130 8120 93 94 0.999 -10 -0.604

No/Yes/Yes
B 140 160 2 2 1.143 20 0.223
C 140 160 2 2 1.143 20 0.223
D 140 160 2 2 1.143 20 0.223
E 125 120 2 1 0.960 -5 -0.065

Data of Table 9 show that for states A and E the PPi paradox
occurs. Even though the influence power (RA and RE) of states A and
E decreased, and those of state A decreased more than those of state E
(RE −R′

E = 0.065 < 0.604 = RA −R′

A), state E lost a seat to state A.
To mention that for this example a similar situation is with criterion
V ′

i − Vi (see Table 9).

Example 9. Let M = 101, n = 5, V = 8685 and V ′ = 8755. Other
initial data and the results of calculations using Adapted Sainte-Laguë
method are systemized in Table 10.

Data of Table 10 show that for states A and E the PPi paradox
occurs. Even the influence power (RA and RE) of states A and E
decreased, and those of state A decreased more than those of state E
(RE −R′

E = 0.128 < 2.256 = RA −R′

A), state E lost a seat to state A.
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Table 10. Results of calculations to Example 9

State Vi V ′

i
xi x′

i
V ′

i
/Vi V ′

i
−Vi R′

i
−Ri PPr/PPa/PPi

A 8130 8000 93 94 0.984 -130 -2.256

No/Yes/Yes
B 140 210 2 2 1.5 70 0.795
C 140 210 2 2 1.5 70 0.795
D 140 210 2 2 1.5 70 0.795
E 135 125 2 1 0.926 -10 -0.128

To mention that for this example a similar situation is with criterion
V ′

i − Vi (see Table 10).
It is of interest how often the d’Hondt, Sainte-Laguë, Huntington-

Hill and Adapted Sainte-Laguë methods are not immune to the Paradox
of population influence. With this aim, the SIMAP computer applica-
tion was used, for the same initial data as for the Hamilton method in
Section 4. The character of percentages PPi dependence on n and
d for M = 101 and p = 0.02 for the d’Hondt (PPi(dH)), Sainte-
Laguë (PPi(SL)), Huntington-Hill (PPi(dH)) and Adapted Sainte-
Laguë (PPi(ASL)) methods can be seen in Figures 4–7.

Figure 4. Dependence of PPi on n and d for d’Hondt method
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Figure 5. Dependence of PPi on n and d for Sainte-Laguë method

From Figures 4–7 one can see that, in terms of the percentage of
non-immunity to the Paradox of population influence, there are no
essential differences between the d’Hondt and Sainte-Laguë methods,
nor between the Huntington-Hill and the Adapted Sainte-Laguë meth-
ods. Additional comparative data show that, from the point of view
of immunity to PPi, in some cases the d’Hondt method is better than
the Sainte-Laguë one and vice-versa; but the difference is not signif-
icant. The same situation is in the case of comparative analyses of
Huntington-Hill and Adapted Sainte-Laguë methods.

Calculations performed show also that for 6 ≤ M ≤ 501, 3 ≤
n ≤ 50, 0.02 ≤ p ≤ 0.1 and 0.1 ≤ d ≤ 1, n < M , the following
relations occur: 0.003% ≤ PPi(dH) ≤ 0.652% (M = 501, n = 50,
p = 0.1, d = 0.1), 0.003% ≤ PPi(SL) ≤ 0.806% (M = 101, n = 50,
p = 0.1, d = 1), 0.001% ≤ PPi(HH) ≤ 0.617% (M = 501, n = 50,
p = 0.1, d = 0.1) and 0.001% ≤ PPi(ASL) ≤ 0.621% (M = 501,
n = 50, p = 0.1, d = 0.1). So, for the specified range of initial data,
the non-immunity to the Paradox of population influence, when using
one of these four apportionment methods, does not exceed, on average,
0.6 − 0, 8%, that is one case per 120-170 cases in total. For example,
no one such case has been identified for the 11 apportionments of seats
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Figure 6. Dependence of PPi on n and d for H.-Hill method

Figure 7. Dependence of PPi on n and d for ASL method
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in the US Congress House of Representatives in 1900-2010 years, made
applying the Webster (1900, 1910 and 1930 Census) and Huntington-
Hill (1940-2010 Census) methods.

6 Conclusions

The well-known population paradox (PPr), based on the population
deviation rate from one apportionment to the next one, is not always
a true paradox. A new formulation of conditions of population para-
doxical situations is proposed, which is based on the absolute deviation
of the population power of influence. In order to distinguish it from
the traditional one, for this particular case the term “Paradox of pop-
ulation influence” (PPi) is used. Of course, it would be better to use
the term “population paradox”, but in the new formulation. Thus, we
count on the fact that the use of term PPi is temporary.

It is well known that the Hamilton method is not immune to
the Population paradox (PPr), whereas the d’Hondt, Sainte-Laguë,
Huntington-Hill and Adapted Sainte-Laguë divisor methods are [1–3,
11]. As for the Paradox of population influence (PPi), the situation
is opposite: the Hamilton method is, and the d’Hondt, Sainte-Laguë,
Huntington-Hill and Adapted Sainte-Laguë methods are not immune
to it.

By computer simulation using the SIMAP application, the per-
centage of non-immunity of Hamilton method to PPr (PPr(H)) and
PPa (PPa(H)), and of d’Hondt, Sainte-Laguë, Huntington-Hill and
Adapted Sainte-Laguë methods to PPi (PPi(dH), PPi(SL)), PPi(HH)
and PPi(ASL), respectively) is estimated. It has been found that, for
6 ≤ M ≤ 501, 3 ≤ n ≤ 50, 0.02 ≤ p ≤ 0.1 and 0.1 ≤ d ≤ 1, n < M , the
following relations occur:

• 0.018% ≤ PPr(H) ≤ 4.66%;

• 0.077% ≤ PPa(H) ≤ 78.58%;

• 0.003% ≤ PPi(dH) ≤ 0.652%;
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• 0.003% ≤ PPi(SL) ≤ 0.806%;

• 0.001% ≤ PPi(HH) ≤ 0.617%;

• 0.001% ≤ PPi(ASL) ≤ 0.621%.

To mention that in all cases, for same values of initial data (M ,
n, p and d), the relation PPr(H) < PPa(H) occurs. Also, for the
specified range of initial data, the percentage of non-immunity to the
Paradox of population influence, when using one of the four examined
divisor methods (d’Hondt, Sainte-Laguë, Huntington-Hill and Adapted
Sainte-Laguë), does not exceed, on average, 0.6-0,8%, that is one case
per 120-170 cases in total.
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