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Abstract. The past decade has been characterized by considerable increase of the penetration level of 

solar photovoltaic systems in energy systems throughout the world. At the same time, solar irradiance 

has an intermittent nature.  Thus, the efficient management of existing and new solar photovoltaic sys-

tems requires an accurate forecasting system of solar irradiance. The purpose of the paper is to develop 

and validate a long-term forecasting model for solar irradiance. This purpose is achieved by applying of 

clustering method and standard mathematical statistics. The modeling includes pre-processing of his-

torical data used for forecasting and post-processing of the types of days resulted from the clustering 

analysis. Historical data include solar irradiance and sky coverage by clouds. Pre-processing supposes 

bi-normalization of the solar irradiance in time and amplitude, as well as clustering, and post-processing 

supposes denormalization to get the actual values. Error metrics and confusion matrix indices have been 

used to assess the accuracy of the proposed forecasting method. Four different model variants have been 

considered, which differ by pre-processing approach of initial data. The comparison of these model 

variants shows that for better accuracy it is required to use seasonality aspects of solar irradiance. The 

main result of paper is the created model, which can be used for the solar irradiance forecast with ac-

ceptable accuracy for this type of forecasting and for generating of the types of days for different annual 

scenarios. The importance of paper results consists in the possibility of using of these scenarios for 

feasibility assessment of the solar photovoltaic system and identifying of the best solutions for their 

integration in the energy system.  
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Abstract. Pe parcursul ultimului deceniu, în întreaga lume, s-a înregistrat o creștere considerabilă a numărului de 

sisteme solare fotoelectrice conectate la sistemul electroenergetic. În același timp, iradianța solară este 

caracterizată de un grad înalt de intermitență. Astfel, pentru un management eficient al sistemelor solare 

fotoelectrice existente și viitoare este necesară existența unui model de prognozare precisă a iradianței solare.  

Scopul lucrării constituie elaborarea și verificarea unui model pentru efectuarea prognozei iradianței solare pe 

termen lung. Scopul înaintat este realizat prin utilizarea metodei clusterelor și statistica matematică. Elaborarea 

modelului include etape de pregătire a datelor istorice necesare pentru realizarea prognozei și prelucrarea datelor, 

obținute în procesul de clusterizare și analiză. Datele istorice utilizate includ iradianța solară și nebulozitatea. 

Procesul de pregătire a datelor inițiale include procedeul de bi-normalizare și clusterizare a iradianței solare și al 

perioadei de strălucire a soarelui, iar prelucrarea rezultatului – procedeul de denormalizare pentru obținerea 

valorilor reale ale iradianței solare. Acuratețea modelului propus este verificată cu ajutorul indicatorilor de eroare 

și a matricei de confuzie. Sunt analizate patru variante ale modelului, care diferă prin abordarea pregătirii datelor 

inițiale pentru modelare. Compararea acestor variante de modele pentru prognoza iradianței solare au arătat că, 

pentru obținerea unei precizii mai mari este necesar să se țină cont particularitățile sezoniere ale iradianței solare. 

Cel mai semnificativ rezultat al lucrării constă în crearea modelului care poate fi utilizat pentru prognoza iradianței 

solare cu o precizie acceptabilă pentru acest tip de prognoză și generarea succesiunii tipului zilelor pentru diferite 

scenarii anuale. Valoarea rezultatului obținute în lucrare constă în posibilitatea utilizării scenariilor anuale generate 

pentru evaluarea fezabilității funcționării sistemelor solare fotoelectrice și identificarea celor mai bune soluții de 

integrare a acestora în sistemul energetic.     

Keywords: predicție, iradianță solară, prognoză, clusterizare, parametri de eroare statistică, model de predicție, 

matrice de confuzie, analiza scenariilor. 
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Abstract. В последнее десятилетие значительно увеличилось число солнечных фотоэлектрических 

установок, подключённых к электроэнергетическим системам по всему миру. В то же время, солнечная 

иррадиация представляет собой непостоянную величину. Поэтому, для эффективного управления 

существующими и нововведёнными в эксплуатацию мощностями фотоэлектрических солнечных систем 

и эксплуатации электроэнергетических систем в нормальном режиме требуется точная модель для 

прогноза солнечной иррадиации. Главной целью данной работы является разработка и проверка модели 

для выполнения долгосрочного прогноза солнечной иррадиации. Предложенная цель в данной работе 

достигается с помощью метода кластеров и математической статистики. Разработка модели 

предусматривает этап подготовки исторических данных для прогнозирования и этап обработки и анализа 

результатов, полученных в процессе кластеризации. Использующиеся исторические данные включают 

солнечную иррадиацию и степень покрытия небесного свода облаками. Процесс подготовки исходных 

данных включает процесс би-нормализации и кластеризации солнечной иррадиации и периода солнечного 

свечения, а обработка результата – процесс денормализации. Точность предложенной модели проверяется 

с помощью стандартных индикаторов ошибок и матрицы путаницы. Для сравнения были 

проанализированы четыре варианта модели, которые отличаются подходом и подготовки исходных 

данных для моделирования. Сравнение этих вариантов моделей показало, что для получения более 

высокой точности необходимо учитывать сезонные особенности солнечной иррадиации.  

Главным результатом работы является полученная модель, которая может быть использована для 

прогнозирования солнечной иррадиации с приемлемой точностью для этого типа прогнозирования и 

получения последовательности типа дней для различных годовых сценариев. Ценность модели состоит в 

том, что эти сценарии могут быть использованы для оценки эффективности работы фотоэлектрических 

солнечных систем и нахождения наилучших решений для их интеграции в электроэнергетическую 

систему. 

Keywords: предсказание, солнечная иррадиация, кластеризация, ошибки прогнозирования, матрица 

путаницы, анализ сценариев. 

 

 
I. INTRODUCTION 

During the last years, all around the world 

electricity generation from renewable energy 

sources (RES) has been increasing constantly. 

These increases led to transformation of energy 

systems from highly centralized systems with 

classical large power plants to systems with a 

growing number of territorial distributed small 

plants based on RES [1,2]. The most significant 

increase of installed capacity concerns 

photovoltaic (PV) sources: from 22.8 GW at the 
end of 2009 to 480.6 GW at the end of 2018 [3]. 

The PV source is highly intermittent and 

depends on meteorological and climate 

conditions, such as solar irradiance, cloudiness, 

air temperature, air humidity, etc. The 

intermittency poses difficulties in grid 

management with raising rate of electricity 

system penetration by solar PV systems, and 

represents great challenges for PV power 

generation forecasting [4]. In particular, solar 

irradiance is the main feature to be considered in 

short-term PV power forecasting [5] carried out 

by using different numerical techniques [6] and 

various methods for unsupervised and supervised 

learning [7]. Some review papers indicate the 

current trends in the different time horizons 

established to perform forecasting, partitioned in 

[8] into very short-term (from seconds to minutes, 

up to one hour), short-term (from one hour to one 

week), medium-term (from one week to one 

month), and long-term (from one month to one 
year) [9].   

Thus, the task of solar irradiance forecasting is 

a crucial aspect for ensuring grid stability, 

reliability and efficient management of the 

existing or new RES power capacity. Without 

accurate prediction, it is difficult to promote 

adequate practices in energy production, 

transportation and transactions, and this fact 

conducts to the reduction of energy system 

efficiency and reliability [4,6].  

However, meteorological conditions depend 

on period of day, season and year, and represent 

highly varying series of data [11], again making 

long-term forecasting not easy to be carried out 
[1,9,10]. 

During the last decade, different forecasting 

techniques have been developed. The major 

commonly used forecasting techniques are 
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persistence methods, statistical methods, physical 
methods, and hybrid methods [4,12].  

Persistence method is the simplest method, but 

with too low accuracy. This method assumes that 

weather conditions at the certain moment in the 

future will be the same as it is when the 

forecasting is executed. 

Statistical methods (including neural 

networks) are mathematical models that use the 

historical data to perform forecasting for next 

periods. These methods are good for short-term 

predictions due the fact that with increasing of the 

forecasting period the errors are increasing. The 

classical statistical techniques are defined by 

considering the data as a time series [12,13]. 

Physical methods take into account the 

physical aspects like topography, altitude, 

obstacles sheltering, atmospheric conditions etc. 

Often these methods are more accurate than other 

methods. They offer very good accuracy for long 

time horizons, but appliance of these methods 

require initial data of good quality [13,14]. The 

most used physical method is the Numerical 

Weather Prediction (NWP) model. This complex 

mathematical model usually requires to be run on 

super computers, which limits the usefulness of 

these models to very short time operation of 
power system. 

The most common and effective method is the 

hybrid method, which represents a combination 

between individual techniques and permits to 

improve forecasting accuracy comparing with 

applications of standalone methods benefiting 

from the advantages of each model [4,7]. 

Conceptually, hybrid methods represent a multi-

stage approach to forecasting, which applies 

different techniques at each stage [13,14]. For 
instance: 

 Satellite-imaging and Artificial Neural 

Networks (ANN) for predictions of global 

solar irradiance on the horizontal surface for 

temporal horizons between 30 and 120 
minutes [15]; 

 Satellite-imaging and Support Vector Machine 

(SVM) for intra-day predictions (in the range 
of 15 to 300 minutes) [16]; 

 Satellite-imaging, Exponential Smoothing 

State (ESS) and back propagated Multi-Layer 

Perceptron (MLP) model for hourly 
predictions [17];  

 Autoregressive integrated moving average 

(ARIMA) and ANN [18]; 

 ANN and Clear sky model [19]  

 NWP and ANN [20]; etc. 

The next sections present a hybrid model 

based on time-series, Clear-sky and k-Nearest 

Neighbors (k-NN) methods for long-term solar 
irradiance forecasting on the horizontal surface. 

II. CLUSTERING OF THE DAY TYPES AND 

FORECASTING MODEL  

The main goal of this paper is the creation of a 

model for long-term solar irradiance forecasting. 

As initial data for the solar forecasting model, 

historical hourly data are used for the period of 

1951 – 1990 for Chisinau (the capital of Republic 

of Moldova, emplaced geographically in the 

central part of country), and the data regarding 

weather features (sky nebulosity and temperature) 

obtaining from meteorological station from 

Chisinau for period of one year period 
(2018 – 2019). 

For long-term forecasting, it is essential to 

predict the daily or weekly amount of generated 

energy. Theoretically, the daily solar irradiance in 

clear sky conditions is distributed in accordance 

with the Moon-Spencer model [21].  

This model used the Sun position on the sky 

with respect to the daytime and year time. Solar 

Irradiance in this model includes Global 

Horizontal Irradiance (GHI), Direct Normal 

Irradiance (DNI) and Horizontal Diffuse 

Irradiance (HDI) [10,22].  

 

Fig. 1. Proposed solar irradiance forecasting 

model flowchart. 
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GHI data is the main component considered 

during forecasting in this paper. Besides historical 

GHI data, GHI in Clear-sky conditions represents 

the maximum GHI that can be received by PV 

systems during a clear sky day. GHI in Clear-sky 

conditions is constant for the same period of the 

year. Additional data required for the proposed 

model are cloud coverage of the sky, air 
temperature and humidity.  

The development of the proposed solar 

irradiance forecasting model includes three 

phases: data pre-processing phase, data 
processing phase, and validation phase (Fig. 1).  

 

A. Data pre-processing phase 

The first phase of the proposed forecasting 

model includes removing nighttime, and data 

normalization. Removing nighttime supposes 

excluding the period between sunset time of 

previous day and sunrise time of the day 
considered.  

Considering that the solar irradiance is a 

function of the sunshine period, which depends on 

the year period, it is difficult to compare solar 

irradiance characteristics for days with 

considerable different sunshine period (Table 1). 

For clear-sky conditions the differences among 

solar irradiance values in sunshine periods can be 

observed in Fig. 2. 

 

 
Fig.2. Solar irradiance in clear-sky condition. 

To allow the comparison between solar 

irradiance data from different period of the year, 

it is necessary to normalize the solar irradiance 

data and the daily sunshine period (this process is 

called bi-normalization). 

The bi-normalization consists of the 

representation of the solar irradiance and sunshine 

time in relative units, both with values between 0 

and 1 [10]. For this purpose, the daily sunshine 

period for each day was limited from the sunrise 

to the sunset time periods for all days. Then, to 

represent the solar irradiance time series with the 

same number of points, the available data points 

are used for data alignment within an 

interpolation process [23] to obtain the same 

number of points (20 points in this paper) at the 

same locations onto the normalized horizontal 

axis. On the vertical axis, the daily solar 

irradiance was divided by GHI in Clear-sky 

conditions (the maximum solar irradiance) for this 

period [10,13].  

For simplifying comparison between types of 

days in dependence of solar irradiance, for 

example sunny days in summer and winter, the 

normalization of solar irradiance was done 
separately for each month.  

Table 1 

Sunrise and sunset time and daytime hours 

Day Sunrise Sunset Sunshine period 

20-Mar 06:07 18:15 12 h and 08 min 

21-Jun 04:08 20:02 15 h and 54 min 

23-Sep 05:51 18:00 12 h and 09 min 

21-Dec 07:47 16:17 8 h and 30 min 

 

In order to prepare data for clustering of daily 

solar irradiance and obtaining better accuracy of 

clustering, three types of patterns have been 

proposed: 
1. Normalized solar irradiance patterns NP; 
2. Sorted normalized solar irradiance patterns 

SNP; 
3. Differences between normalized solar 

irradiance patterns DNP. 
For creating NP, the data regarding solar 

irradiance and sunshine time were normalized 
according to the procedure described above [10].  

For creating SNP, the normalized solar 

irradiance data have been sorted in the ascending 

order. The DNP have been determined by 

considering two representative days: one for clear 

sky conditions, and one for cloudy sky conditions. 

Beginning from the irradiance features of these 

two days, for each day the normalized solar 

irradiance differences were calculated and sorted 
in ascending order.  

The results of normalization of the solar 

irradiance and sunshine period are shown in 

Fig. 3. In particular, the available data are 

represented in bi-normalized form in Fig. 3a, and 

are sorted in the ascending order in Fig. 3b.  

For clustering, it has been used the k-means 

method with the help of Classification Learner 

tool in MATLAB®, which carries out the daily 

solar irradiance pattern grouping into K exclusive 

clusters (groups). 



PROBLEMELE ENERGETICII REGIONALE N (NN) AAAA 

 98 

For the choice of the number of clusters, it is 

possible to consider the results of a parametric 

analysis by changing K, or to set up the number K 

according with a practical criterion. In the 

example shown in [10] for K = 12, the clustering 

results are fine, but it is not immediate to give a 

practical meaning to all the clusters on the basis 

of the results; for example, two clusters contain 

solutions close to the clear sky conditions, and the 

differences among the clusters are progressively 

lower. Conversely, with a smaller number of 

clusters it is easier to identify the type of days 

from practical considerations. In this paper, the 

chosen number of clusters is 𝐾 = 4, with a 

practical meaning of having a simple 

categorization of the days into clear, mostly clear, 

mostly cloudy, and cloudy.  

The results of the k-means clustering with 𝐾 =
4 are shown in Fig. 4 for NP, Fig. 5 for SNP, and 

Fig. 6 for DNP. These results confirm the 

partitioning of the days into clear (cluster 1), 

mostly clear (cluster 2), mostly cloudy (cluster 3), 

and cloudy (cluster 4). The effectiveness of the 

choice K = 4 has been checked by repeating the k-

means clustering with different number of clusters 

and tracking two clustering performance 

indicators, namely, the sum of the Euclidean 

distances between centroids for each cluster (the 

lower, the better), and the silhouette values (the 

higher, the better). Fig. 7 shows the results. The 

performance indicators for the practical solution 

chosen are relatively good, and are acceptable 

with respect to the higher difficulty of 

interpretation that would occur with higher 

numbers of clusters.  

 

Fig.4. Clustering results based on normalized irradiance patterns 

 

Fig.5. Clustering results based on the sorted normalized irradiance and corresponding normalized 

irradiance patterns 

 
Fig.3. Solar irradiance patterns 
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Fig.6. Clustering results based on the differences of the sorted normalized irradiance patterns and  

sorted and normalized irradiance patterns 

Table 2 

Succession of day type after knowing the type of 
preceding day 

Type 

of 

data 

Day 

type 

Preceding day 

C
le

ar
 

M
o

st
ly

 

cl
ea

r 

M
o

st
ly

 

cl
o

u
d

y
 

C
lo

u
d

y
 

T
o

ta
l 

NP 

Clear 22 16 7 10 55 

Mostly 

clear 
12 46 16 15 89 

Mostly 

cloudy 
11 11 16 37 75 

Cloudy 10 16 36 84 146 

SNP 

Clear 17 18 9 7 51 

Mostly 

clear 
14 37 22 14 87 

Mostly 

cloudy 
16 19 22 36 93 

Cloudy 4 13 40 77 134 

DNP 

Clear 20 21 11 7 59 

Mostly 

clear 
14 33 19 15 81 

Mostly 

cloudy 
17 18 20 34 89 

Cloudy 8 9 39 80 136 

 

 
Fig. 7. Clustering performance for different 

numbers of clusters K. Better performance occurs 

for higher silhouette and lower sum of distances. 

Table 3 

The dissimilitude between three types of 

clustering approaches 

Day 

type 

Dissimilitude between types of clustering  

NP vs. SNP NP vs. DNP 
SNP vs. 

DNP 

Clear -4 1.1% 4 1.1% 8 2.2% 

Mostly 

clear 
-2 0.5% -8 2.2% -6 1.6% 

Mostly 

cloudy 
18 4.9% 14 3.8% -4 1.1% 

Cloudy -12 3.3% -10 2.7% 2 0.5% 
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Table 2 and Table 3 show the results and the 

dissimilitude between clustering with the three 

types of input data. It can be observed that the 

differences are not significant, but after visual 

assessment of solar irradiance pattern clusters, it 

can be concluded that the SNP and DNP 

approaches are more accurate. 

In order to use the clustering results for solar 

irradiance forecasting, it was used the probability 

of the succession of days belonging to each cluster 

during the year in dependence of the type of 

preceding days (Table 4). In the columns there are 

the types of preceding days, and in the rows the 

following types of days and their probabilities of 

occurrence.  

Table 5 shows an example of probability of 

succession type of day with known type of two 

preceding days. 

 

B. Data processing phase 

Data training consists of the simulation of a 

one-year day-by-day succession, with the scope 

of forecasting solar irradiance features for that 

year. The baseline for simulation is given by the 

probability of type of day successions, together 

with the average number of days of each cluster 

per year. Data training was carried out by using 

the available Matlab® application.  

Forecasting is performed by using four 

models. Model 1 takes into account only one 

preceding day, without considering seasonal 

information. Model 2 takes into account the two 

preceding days, again without considering 

seasonal information. 

Table 4 

Probability of finding a given day type after 

knowing the type of the preceding day (for 

Model 1) 

Type 

of 

data 

Day 

type 

Preceding day 

C
le

ar
 

M
o

st
ly

 

cl
ea

r 

M
o

st
ly

 

cl
o

u
d

y
 

C
lo

u
d

y
 

NP 

Clear 40% 18% 9% 7% 

Mostly 

clear 22% 52% 21% 10% 

Mostly 

cloudy 20% 12% 21% 25% 

Cloudy 18% 18% 48% 58% 

SNP 

Clear 33% 21% 10% 5% 

Mostly 

clear 27% 43% 24% 10% 

Mostly 

cloudy 31% 22% 24% 27% 

Cloudy 8% 15% 43% 57% 

DNP 

Clear 34% 26% 12% 5% 

Mostly 

clear 24% 41% 21% 11% 

Mostly 

cloudy 29% 22% 22% 25% 

Cloudy 14% 11% 44% 59% 

 

 

Table 5 

Probability of finding a given day type after knowing the types of two preceding days (for Model 2) 

1st preceding 

day 
Clear 

Mostly 

clear 

Mostly-

cloudy 
Cloudy Clear 

Mostly 

clear 

Mostly-

cloudy 
Cloudy 

2nd preceding 

day 
Clear Clear Clear Clear 

Mostly 

clear 

Mostly 

clear 

Mostly 

clear 

Mostly 

clear 

Clear 35.3% 33.3% 55.6% 0.0% 35.7% 18.9% 22.7% 7.1% 

Mostly clear 35.3% 27.8% 11.1% 28.6% 50.0% 43.2% 40.9% 35.7% 

Mostly-cloudy 23.5% 22.2% 33.3% 71.4% 14.3% 27.0% 13.6% 28.6% 

Cloudy 5.9% 16.7% 0.0% 0.0% 0.0% 10.8% 22.7% 28.6% 

1st preceding 

day 
Clear 

Mostly 

clear 

Mostly-

cloudy 
Cloudy Clear 

Mostly 

clear 

Mostly-

cloudy 
Cloudy 

2nd preceding 

day 

Mostly-

cloudy 

Mostly-

cloudy 

Mostly-

cloudy 

Mostly-

cloudy 
Cloudy Cloudy Cloudy Cloudy 

Clear 12.5% 21.1% 4.5% 5.6% 0.0% 15.4% 5.0% 3.9% 

Mostly clear 25.0% 31.6% 18.2% 22.2% 75.0% 7.7% 22.5% 1.3% 

Mostly-cloudy 25.0% 21.1% 27.3% 22.2% 0.0% 53.8% 20.0% 27.3% 

Cloudy 37.5% 26.3% 50.0% 50.0% 25.0% 23.1% 52.5% 67.5% 
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Table 6 

Probability of finding a given day type after 

knowing the type of one preceding day  
(for Model 3) 

Day type 

Preceding day 

C
le

ar
 

M
o

st
ly

 

cl
ea

r 

M
o

st
ly

 

cl
o

u
d

y
 

C
lo

u
d

y
 

Cold time period 

Clear 12.5% 20.0% 4.8% 4.2% 

Mostly clear 0.0% 0.0% 9.5% 2.1% 

Mostly cloudy 75.0% 20.0% 28.6% 22.9% 

Cloudy 12.5% 60.0% 57.1% 70.8% 

Warm time period 

Clear 38.6% 19.8% 13.7% 7.9% 

Mostly clear 31.8% 45.7% 35.3% 31.6% 

Mostly cloudy 22.7% 22.2% 19.6% 36.8% 

Cloudy 6.8% 12.3% 31.4% 23.7% 

 

Model 3 takes into account one preceding day 

and the probabilities are divided into two time 

periods (i.e., the cold period from November 1st to 

March 31st, and the warm period for the rest of the 

year). Finally, Model 4 takes into account one 

preceding day and the probabilities are divided 

into the four seasons. Another model could take 

into account two preceding days and the 

probabilities divided into the four seasons. 

However, the forecasting with this model would 

be quite problematic, due the fact that it would 

require two or four matrices with probabilities for 

each seasons with 64 cells each, and most of them 

with null values, leading to a rather impractical 

modeling. For this reason, this forecasting model 
was not applied. 

In models 1, 3 and 4, at the initial stage of 

modeling one day preceding the ”forecast year” is 

extracted. Depending on the type of this day and 

of the probability of the following type of day, it 

is determined the type of the next day. Then, the 

types of the next days are determined in the same 

manner, with remark that the type of preceding 

day is taken as the type of the following day 

determined at the previous stage (it was not 

necessary to introduce manually the type of 

preceding day). This process continues until the 
simulation of all the days of the year. 

Forecasting with two preceding days 

distinguishes from the previous variants of 

forecasting by taking into account the type of the 

two preceding days (not only one preceding day). 

Table 7 

Probability of finding a given day type after 

knowing the type of one preceding day  
(for Model 4) 

Day type 

Preceding day 

C
le

ar
 

M
o

st
ly

 

cl
ea

r 

M
o

st
ly

 

cl
o

u
d

y
 

C
lo

u
d

y
 

Winter 

Clear 0.0% 20.0% 0.0% 3.8% 

Mostly clear 0.0% 0.0% 10.0% 2.5% 

Mostly cloudy 75.0% 20.0% 30.0% 22.5% 

Cloudy 25.0% 60.0% 60.0% 71.3% 

Spring 

Clear 33.3% 27.3% 5.0% 9.5% 

Mostly clear 22.2% 18.2% 20.0% 14.3% 

Mostly cloudy 33.3% 18.2% 25.0% 47.6% 

Cloudy 11.1% 36.4% 50.0% 28.6% 

Summer 

Clear 46.2% 17.5% 16.7% 0.0% 

Mostly clear 30.8% 52.6% 43.3% 60.0% 

Mostly cloudy 15.4% 24.6% 23.3% 40.0% 

Cloudy 7.7% 5.3% 16.7% 0.0% 

Autumn 

Clear 16.7% 28.6% 23.1% 9.1% 

Mostly clear 33.3% 35.7% 15.4% 13.6% 

Mostly cloudy 50.0% 14.3% 7.7% 18.2% 

Cloudy 0.0% 21.4% 53.8% 59.1% 

 

At the first stage, the types of these days are 

taken in accordance with the types of two days 

preceding the period of interest (Table 5). In the 

next stages, the types of preceding days are taken 

as the types of following days in the previous 

stage.  

In Model 3 and Model 4 the probabilities of 

following a given type of day after the certain type 

of preceding day were extracted from Table 6 and 

Table 7, respectively, in accordance with the 
particularities of each season. 

 

C. Validation phase 

This phase includes de-normalization of the 

solar irradiance resulted from the forecasting 

process, calculation of the actual solar irradiance, 
and validation of forecasting.  

De-normalization represents the opposite 

process of normalization, i.e., representation of 
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forecasting solar irradiance and time in natural 

units kW/m2 and, respectively, hours. For 

obtaining the actual solar irradiance, the result of 

forecasting (in relative units) is multiplied by 

solar irradiance in Clear-sky conditions for the 

respective period of time [9,13].  

In order to validate the forecasting results, the 

confusion matrix is constructed, and common 

errors used for accuracy assessment of forecasting 

(root mean square error, average of the errors, 

mean absolute error and mean absolute 

percentage error) are calculated. 

 

Confusion Matrix 

The Confusion matrix is a summary of 

prediction results and shows the ways in which 
the classification model performs in predictions.  

The number of correct and incorrect 

predictions are summarized with counting values 

and broken down by each cluster. It shows not 

only the errors, but more importantly the types of 

errors made. The columns represent the predicted 

types of days, and the rows the actual types of 

days. 

With the view of accuracy calculation for each 

predicted cluster, the data from the confusion 
matrix (Table 9) are classified as: 

 True Positives (TP): placed in the top left cell, 

represents the data rows (type of day) 

belonging to the positive class (i.e., clear) and 
correctly classified as such; 

 False Negatives (FN): placed in the first row at 

the right side of the TP cell, represents the data 

rows (type of day) belonging to the positive 

class (i.e., clear) and incorrectly classified as 

negative (i.e., mostly clear, mostly cloudy or 

cloudy); 

 False Positives (FP): placed in the first column 

below the TP cell, represents the data rows 

(type of day) belonging to the negative class 

(i.e., mostly clear, mostly cloudy or cloudy) 

and incorrectly classified as positive (i.e., 
clear); 

 True Negatives (TN): placed in rows 2 – 4 and 

columns 2 – 4, represents the data rows (type 

of day) belonging to the negative class (i.e., 

mostly clear, mostly cloudy or cloudy) and 

correctly classified as such. 

 

Overall statistics summarize the accuracy of 

the forecasting model, represented by Overall 

Accuracy and the Overall Error. The Overall 

Accuracy of forecasting model is determined as 

the ratio of true predicted type of days to total 
number of days: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
  (1) 

The Overall error is determined as the ratio 

between the false predicted type of days and the 

total number of days: 

𝐸𝑟𝑟𝑜𝑟 =
(𝐹𝑃+𝐹𝑁)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
   (2) 

The class statistics summarizes the class 

performance for the positive class and the 

negative class, separately.  

Sensitivity shows the capability of the model to 

detect positive classes. So if Cluster 1 is a positive 

class, the Sensitivity quantifies how many actual 

clear days are predicted correctly as clear. The 
Sensitivity is evaluated as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  (3) 

Specificity shows the accuracy of assignment 

to the positive class: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄   (4) 

Recall shows the ratio of the total number of 
days correctly classified as positive: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄   (5) 

Precision shows the capability of the model to 

assign positive events to the positive class: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄  (6) 

Recall and Precision are interconnected. If a 

stricter filter is used, it is increased the number of 

days reported correctly as Clear days, but at the 

same time is increased the number of days of other 

types reported incorrectly as Clear days. And vice 

versa, a less strict filter leads to increasing the 

number of Clear days reported incorrectly as days 

of other types.  Often it is used the F-measure, 

which is the harmonic mean of Recall and 
Precision: 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (7) 

Errors calculation 

For quantitative estimation of forecasting, 

statistical methods are used. The estimation error 

ε is defined as the difference between the forecast 

irradiance 𝐼𝑓𝑜𝑟 and actual irradiance 𝐼𝑎𝑐𝑡: 

𝜀 = 𝐼𝑓𝑜𝑟 − 𝐼𝑎𝑐𝑡    (8) 

The positive value of ε appears when the solar 

irradiance is overestimated, and vice versa, the 

negative value appears when the forecasting solar 
irradiance is underestimated.  
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Table 8 

Sample results of forecasting of the types of days 

Day Actual 

Forecast 

Model 1 Model 2 Model 3 Model 4 

02/11/2017 Mostly cloudy Cloudy Cloudy Cloudy Cloudy 

03/11/2017 Cloudy Cloudy Cloudy Cloudy Cloudy 

04/11/2017 Cloudy Cloudy Cloudy Cloudy Mostly cloudy 

05/11/2017 Mostly cloudy Cloudy Cloudy Cloudy Clear 

06/11/2017 Cloudy Mostly cloudy Mostly cloudy Cloudy Mostly cloudy 

07/11/2017 Cloudy Mostly clear Cloudy Mostly cloudy Clear 

08/11/2017 Cloudy Mostly cloudy Mostly clear Mostly cloudy Mostly clear 

09/11/2017 Cloudy Mostly clear Mostly cloudy Mostly clear Clear 

10/11/2017 Cloudy Mostly cloudy Mostly clear Cloudy Mostly cloudy 

11/11/2017 Mostly cloudy Cloudy Mostly clear Cloudy Cloudy 

12/11/2017 Mostly cloudy Cloudy Mostly cloudy Cloudy Cloudy 

01/02/2018 Clear Mostly clear Cloudy Cloudy Clear 

02/02/2018 Mostly cloudy Clear Cloudy Cloudy Cloudy 

03/02/2018 Cloudy Mostly cloudy Clear Mostly cloudy Cloudy 

04/02/2018 Cloudy Cloudy Mostly clear Mostly cloudy Mostly cloudy 

05/02/2018 Cloudy Cloudy Clear Mostly clear Cloudy 

06/02/2018 Cloudy Cloudy Mostly cloudy Cloudy Cloudy 

07/02/2018 Cloudy Cloudy Cloudy Cloudy Mostly cloudy 

08/02/2018 Cloudy Mostly clear Cloudy Cloudy Cloudy 

09/02/2018 Cloudy Mostly clear Cloudy Cloudy Clear 

10/02/2018 Mostly cloudy Clear Cloudy Cloudy Cloudy 

01/06/2018 Mostly clear Cloudy Mostly cloudy Mostly clear Mostly clear 

02/06/2018 Mostly clear Cloudy Cloudy Mostly clear Mostly clear 

03/06/2018 Clear Mostly cloudy Cloudy Mostly clear Mostly clear 

04/06/2018 Mostly clear Mostly clear Cloudy Mostly cloudy Mostly clear 

05/06/2018 Clear Mostly cloudy Cloudy Mostly clear Mostly cloudy 

06/06/2018 Clear Mostly clear Mostly cloudy Mostly cloudy Mostly clear 

07/06/2018 Clear Mostly cloudy Cloudy Cloudy Mostly cloudy 

08/06/2018 Clear Cloudy Mostly cloudy Mostly cloudy Mostly clear 

09/06/2018 Cloudy Cloudy Mostly cloudy Mostly clear Mostly cloudy 

10/06/2018 Cloudy Cloudy Cloudy Mostly clear Mostly cloudy 

 

 

 

 

 

 

 

 

Fig. 8. Sample results of forecasting of solar irradiance 
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The most common indices presented in the 
literature are [1,2,13,24-26]: 

 The root mean square error (RMSE), the most 

popular error used for forecasting accuracy 

assessment, calculated as: 

𝑅𝑀𝑆𝐸 = √1 𝑁⁄ ∑ 𝜀𝑖
2𝑁

𝑖=1  (9) 

 The average of the errors (MBE), defined as 

the mean difference between forecast and 

actual irradiance, represents the systematic 

part of the error: 

𝑀𝐵𝐸 = 𝜀̅ = 1 𝑁⁄ ∑ 𝜀𝑖
𝑁
𝑖=1  (10) 

 The mean absolute error (MAE), more 

sensitive to high-value errors, is useful in those 

applications insensitive to minor errors, is 

defined as the absolute mean difference 

between forecast and actual irradiance, and 
represents the systematic part of the error: 

𝑀𝐴𝐸 = 1 𝑁⁄ ∑ |𝜀𝑖|
𝑁
𝑖=1  (11) 

 The mean absolute percentage error (MAPE), 

which assesses uniform prediction errors: 

𝑀𝐴𝑃𝐸 = 1 𝑁⁄ ∑ |(𝐼𝑎𝑐𝑡 − 𝐼𝑓𝑜𝑟) 𝐼𝑎𝑐𝑡⁄ |𝑁
𝑖=1  (12) 

 

III. RESULTS AND DISCUSSIONS 

A. Results and performance assessment of the 

prediction of the day types 

The proposed forecasting model has been used 

for forecasting GHI for the period 02 November 

2017 – 01 November 2018 for the Chisinau 

Municipality, Republic of Moldova. The actual 

type of day and the solar irradiance value that 

presents real solar features has been compared 

with the forecast type of day and solar irradiance. 

An example of this comparison is presented in 

Table 8 and Fig. 8. The sample has been chosen 

randomly, and three different periods of the year 
(autumn, winter and spring) are presented. 

For accuracy assessment of the day type 

prediction, the confusion matrix shown in Table 9 

presents the results of comparing the forecast and 
actual succession of days. 

The overall performance of forecasting model 

and class prediction statistics is presented in Table 

10 and Table 11. The overall statistics of the 

forecasting models shows that Model 4, which 

takes into account seasonality aspects of solar 
irradiance, is the most exact.  

At the same time, Model 2, which neglects 

these aspects, is the most inexact model. Thus, for 

better results it is necessary to take into account 

probabilities determined per seasons, but taking 

two preceding days for forecasting was practically 
ineffective. 

 

Table 9 

Confusion Matrix for Clear class (Model 4) 

 

Forecast 

Clear 

Mostly 

clear 

Mostly 

cloudy Cloudy 

A
ct

u
al

 

Clear 18 (TP) 20 (FP) 13 (FP) 13 (FP) 

Mostly 

clear 
22 (FN) 51 (TN) 17 (TN) 7 (TN) 

Mostly 

cloudy 
10 (FN) 9 (TN) 9 (TN) 31 (TN) 

Cloudy 23 (FN) 25 (TN) 13 (TN) 84 (TN) 

 

Table 10 

Overall statistics per forecasting models 

Model Accuracy Error 
Correctly 

Classified 

Incorrectly 

Classified 

1 0.312 0.688 114 251 

2 0.238 0.762 87 278 

3 0.362 0.638 132 233 

4 0.444 0.556 162 203 

 

Table 11  

Class statistics (Model 4) 

Type of day TP FP TN FN Recall Precision Sensitivity Specificity F-measure 

Clear 18 46 246 55 0.247 0.281 0.247 0.842 0.263 

Mostly clear 51 46 214 54 0.486 0.526 0.486 0.823 0.505 

Mostly cloudy 9 50 263 43 0.173 0.153 0.173 0.840 0.162 

Cloudy 84 61 169 51 0.622 0.579 0.622 0.735 0.600 
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The performance of the forecasting model is 

quantifying by calculation of error samples for the 

days and for the entire year. The results of the 

error calculations are presented in Table 12, Fig. 

10 and Fig. 11. Error analysis demonstrates that 

taking into account of the seasonality aspects is 

crucial for forecasting accuracy. Models 3 and 4 

show lower level of error indices. Overall Model 
4 has lower MBE than Model 3. 

 

Table 12  

Error indices per year 

Model 
RMSE  

kW/m2 

MBE 

kW/m2 

MAE 

kW/m2 

MAPE 

 % 

1 0.154 -0.034 0.098 39.8 

2 0.157 -0.027 0.103 42.1 

3 0.131 -0.017 0.083 33.6 

4 0.131 -0.001 0.082 33.3 

 

  

 

Fig. 10. Error indices per sample days. 

 

Fig. 11. Error indices per year. 
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B. Discussion and applications to scenario 

generation 

The results of the comparisons carried out 

among the four variants indicate that the best 

performance is obtained by using Model 4, which 

takes into account seasonality aspects of the solar 

irradiance. The calculations of the classical errors 

such as MAPE show relatively high values of the 

errors. However, it has to be considered that these 

errors are obtained by trying to identify the type 

of day in a long-term forecasting context. Trying 

to guess the type of day that will occur in a long-

term time horizon is not the appropriate way to 

proceed, as the uncertainty concerning the future 

is so high that it is virtually impossible to identify 

the day type for a single day.  

The MAPE error itself is a limited metric to 

address this kind of problem. Better metrics 

should be found, based on the aggregate behavior 

of the days in a given period. Indeed, the 

comparison presented above had only the goal to 

compare the four models, and to identify Model 4 

as the most suitable one. Model 4 is now used to 

create a mechanism of scenario generation. In 

each scenario, the day types for an entire year are 

generated by using the information available. 

Since the process of scenario generation depends 

on random number extractions, it is possible to 

construct a large set of scenarios that can be then 

used for different types of applications in which 

the definition of multiple scenarios is useful to 

make a probabilistic characterization of the 

operation of a PV system.  

An example of scenario generation has been 

executed by constructing 100 scenarios starting 

from different days of the year, considering the 

partitioning into the four seasons. The type of day 

has been chosen randomly with the probability 

given by the relative occurrence of the types of 

day in the corresponding season. Fig. 12 shows 

the results, in the form of the Cumulative 

Distribution Function (CDF) of the number of 

days. The number of days found in the 100 

scenarios for the day types in the four seasons are 

included in relatively wide ranges. This confirms 

 

 

Fig. 12. CDF of the generation of 100 scenarios for one year. The red dots indicate a real situation. 
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the possibility to generate various scenarios with 

different numbers of days, following the 

variability that occurs in real conditions.  

To confirm the validity of the ranges obtained, 

a red dot is positioned on each figure to show the 

number of days that occurred in a real case for one 

year.  

It can be seen that the real number of days var-

ies considerably, but it is included in the ranges. 

In any case, the numbers of days are linked to-

gether by the fact that the sum of the days in a 

given season is fixed. Thereby, if more days of a 

given type appear during one year, the number of 

days of all the other types will be lower.  

A further result concerning the generation of 

the scenarios is presented in Fig. 13. The actual 

types of day found in a real situation are super-

posed to the types of days found in three scenarios 

arbitrarily taken from the 100 scenarios gener-

ated.  

It can be seen that the distribution of the types 

of days is consistent in the various cases, even 

though the same day can be different in the vari-

ous scenarios. For example, during the Winter 

 
1 – Cloudy; 2 – Mostly cloudy; 3 – Mostly Clear; 4 – Clear 

Fig. 13. Comparison between Actual type of day and three different modeled scenarios. 
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there are some clear days in all scenarios, at dif-

ferent locations, with a situation that resembles 

the real case in which the clear days appear occa-

sionally.  

Furthermore, there are groups of successive 

days with similar characteristics in each scenario, 

which represent what may happen in reality, with 

a sequence of corresponding days that does not 

appear regularly every year in the same period. 

These results confirm the practical usefulness of 

the proposed way to generate the day type scenar-

ios. 

 

CONCLUSIONS 

In recent years the diffusion of solar PV 

systems grew up considerably. However, solar 

irradiance has intermittent nature, so that for 

efficient planning of existing capacities and new 

capacity to be installed it is extremely important 

to carry out long-term forecasting with acceptable 

accuracy. This paper has developed four variants 

of a forecasting model using clustering method 

and standard statistical instruments. These models 

have been compared, showing that for better 

accuracy it is recommended to use seasonality 

aspects of the solar irradiance. The most suitable 

model has then been used to generate a number of 

scenarios that represent the possible variability of 

the type of day during one year. These scenarios 

are useful to carry out any probabilistic analysis 

in which it is important to incorporate the 

variability of the type of day during the year. 

Further research will aim at enhance the 

accuracy of the presented model by testing its 

capabilities in multiple sites with different 
meteorological conditions. 
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