
Journal of Engineering Science Vol. XXIX, no. 2 (2022), pp. 91 - 107
Fascicle Electronics and Computer Science ISSN 2587-3474
Topic Computers and Information Technology eISSN 2587-3482

Journal of Engineering Science June, 2022, Vol. XXIX (2)

https://doi.org/10.52326/jes.utm.2022.29(2).09
UDC 004.8/.9:576

COMPUTER SYSTEMS SYNTHESIS INSPIRED FROM BIOLOGIC CELLS
STRUCTURES

Silvia Munteanu*, ORCID: 0000-0003-0749-8457,
Viorica Sudacevschi, ORCID: 0000-0003-0125-3491,

Victor Ababii, ORCID: 0000-0002-0769-8144

Technical University of Moldova, 168 Ștefan cel Mare Blvd., Chișinău, Republic of Molodova
*Corresponding author: Silvia Munteanu, silvia.munteanu@calc.utm.md

Received: 02. 20. 2022
Accepted: 03. 25. 2022

Abstract. This paper deals with a synthesis method of membrane computer systems inspired
from the biological cells structure. The functional concept of the computer system is based
on the internal structure, chemical transformations and the way of interaction between living
cells. Thus, the computer system is composed of a set of autonomous, homogeneous or
heterogeneous computing cells, which communicate with each other in synchronous or
asynchronous mode. The algorithmic complexity of the solved problem depends on the
knowledge gained, the rules of data processing and the computer system topology. It is
proposed the sequence of operations for the synthesis of membrane computer systems with
implementation in reconfigurable FPGA architectures which includes: analysis of behavioural
models of living organisms and their interpretation in artificial intelligence models; structure
and functional description of the computing cell; cell modelling and performance evaluation
using Petri nets; Van diagram of the membrane computer system topology; formal description
of the membrane computer system topology by applying the JSON formatting language;
validation, functional modelling and performance evaluation of the membrane computer
system topology using Petri nets; Hardware Description Language (HDL) code of the cell from
which the principle electrical diagram and the time diagrams are obtained; implementation
of the computer system in the FPGA circuit.

Keywords: computational topology, cognitive properties, evolutionary computing, FPGA, HDL,
knowledge, membrane computing, nature-inspired computing, natural computing, P-
Systems, Petri nets, swarm intelligence, JSON.

Rezumat. În lucrare se propune o metodă de sinteză a sistemelor de calcul membranar
inspirate din structura celulelor biologice. Conceptul funcțional al sistemului de calcul este
bazat pe structura internă, transformările chimice și modul de interacțiune dintre celulele vii.
Astfel, sistemul de calcul este compus dintr-o mulțime de celule de calcul autonome,
omogene sau eterogene, care comunică între ele în regim sincron sau asincron.
Complexitatea algoritmică a problemei soluționate depinde de cunoștințele acumulate,
regulile de procesare a datelor și topologia sistemului de calcul. Este propusă secvența de

https://doi.org/10.52326/jes.utm.2022.29(2).09

92 Computer systems synthesis inspired from biologic cells structures

Journal of Engineering Science June, 2022, Vol. XXIX (2)

operații pentru sinteza sistemelor de calcul membranar cu implementare în arhitecturi
reconfigurabile FPGA care include: analiza modelelor comportamentale ale organismelor vii
și modele de interpretare a acestora în inteligența artificială; dezvoltarea structurii și
descrierea funcțională a celulei de calcul; modelarea și evaluarea performanțelor celulei prin
Rețele Petri; sinteza diagramei Van a topologiei sistemului de calcul membranar; descrierea
formală a topologiei sistemului de calcul membranar prin aplicarea limbajului de formatare
JSON; validarea, modelarea funcțională și evaluarea performanțelor topologiei sistemului de
calcul membranar prin Rețele Petri; elaborarea codului de descriere hardware a celulei în
baza căreia sunt obținute schema electrică de principiu și diagramele de timp; implementarea
sistemului de calcul în circuitul FPGA.

Cuvinte cheie: topologii de calcul, proprietăți cognitive, calcul evolutiv, FPGA, HDL, cunoștințe,
calcul membranar, calcul inspirat din natură, calcul natural, P-Systems, rețele Petri,
inteligență de grup, JSON.

Introduction
The theory of evolution is the most important theory in biology. Evolution can add an

extra dimension to a lot of aspects of natural history, give new sense to living facts and social
change. Evolution means change, change in the form and behaviour of organisms between
generations. The forms of organisms, at all levels from DNA sequences to macroscopic
morphology and social behaviour, can change from those of ancestors during evolution.
Adaptation is another crucial concept of the theory of evolution and refers to life design and
those properties of living being that allow them to survive and reproduce in nature. Natural
selection, also an important concept of evolution, means that some individuals in the
population tend to contribute with more descendants to the next generation than others,
being better adapted to the conditions of the environment in which they live [1, 2].

In 1998, academician Gheorghe Păun laid the foundations of a new field in computer
science called membrane computing. Membrane computing is a branch of natural computing,
being defined as a field of computer science with two major objectives: to be inspired by
nature for the benefit of computer science - data bases, data operations, computer
architectures, in the most general way - and vice versa, to provide new tools to those who
study nature by other means, such as biologists or physicists. Natural calculus is a field that
contains genetic algorithms, evolutionary calculus, with ideas from the genome area, neural
algorithms. Computing inspired by the area of DNA - DNA Computing, also proposes a new
hardware, the DNA molecule. Membrane computing aims to teach from the example of the
cell and create cell-like systems by the help of mathematics and computer science [3].

Nature has served as a source of inspiration for many areas of the exact sciences,
including computer science, artificial intelligence and related fields [4, 5]. Because most
modern technological systems that have been and are being developed are extremely
complex, distributed and interconnected, they depend on efficient communication, require
high flexibility, adaptability and the ability to meet quality and performance requirements.

Carrying out a more detailed analysis of natural systems, we can see that they are
usually characterized by a very high level of complexity. This complexity indicates that the
behaviour of natural systems may be unpredictable and inaccurate, but at the same time
living organisms and the ecosystems in which they are living have a substantial degree of
survival. Examples of such resistant systems can be colonies of social organisms, nervous
systems, etc. The survivability of the system is determined by a number of parameters: a large

S. Munteanu, V. Sudacevschi, V. Ababii 93

Journal of Engineering Science June, 2022, Vol. XXIX (2)

number of objects in each system that can be replaced by others; free but flexible
interconnections between objects; differences between objects in the system that allow
flexible responses to a changing environment; the complex environment in which all
components interact and produce various responses / actions [4]. Natural organisms have
demonstrated by their existence the ability to cope with exceptional situations and to adapt
to the environment through the ability to learn throughout life and by evolving over several
generations [5].

It follows that natural systems have several properties that form the basis for many
nature-inspired applications, namely dynamics, flexibility, robustness, self-organization,
simplicity of basic objects and decentralization. Another important aspect of living organisms
is that they always live in conditions of extreme competition. Therefore, they can be subject
to actions that may partially or completely destroy the population, but in most cases they can
be fully recovered. The ability to recover is determined by the presence of the immune system
of individuals or interactions within and between populations. Resource limitation is one of
the selection criteria that can ultimately lead to more efficient self-organization and recovery
[1-3].

Underlying the definition of natural computation is the concept of P-System which is
a computational model based on processes inspired by the behaviour and structure of
biological cells. P-System is an abstraction model of computational processes by applying
the interaction mode of chemicals and the cell membrane. This idea was first proposed by
Gheorghe Păun in 1998 [6], which were later developed as a new branch of theoretical
informatics [7, 8].

In the process of membrane computer systems (P-Systems) developing were designed
some components that are functionally present in biological cells. The activity of a P-System
can only be analysed in an environment that is the provider of input data and respectively
the consumer of the results of their processing. Membranes are the main components of a P-
Systems structure. A computational membrane is an autonomous functional logical unit that
includes a set of objects, a set of rules, and / or a set of other membranes. The outer
membrane that interacts with the environment is also called the "container membrane". A
membrane may dissolve itself and in this case its contents migrate to the membrane to which
it belongs or divide while retaining all or part of its properties [7, 8].

The functional logic of membrane computer systems is determined by a set of rules. A
rule is validated for a lot of objects or input conditions that are applied, is consumed and
produce a lot of objects or output conditions. In order to exclude internal competition, a rule
may take precedence over other rules (dominant rules), so that priority computational models
can be developed with priority in which less dominant rules (with low quality parameters)
will be applied only in critical or exceptional conditions [9-11].

The algorithmic complexity of a P-System depends on the set of rules defined for each
membrane and their topological structure. The main objective of applying membrane
computation models is the optimal distribution of computational tasks in order to obtain a
parallel computing process with maximum efficiency. Membrane computer systems with both
asynchronous and synchronous processing can be defined [13, 14]. A topology of a P-System
can be defined in the form of Ven diagram, tree or formal description [12].

Membrane computing models offer the possibility to formally and structurally describe
computing and control systems of varying complexity, for example specialized logic
structures and processors, reconfigurable computer systems, complex computing

94 Computer systems synthesis inspired from biologic cells structures

Journal of Engineering Science June, 2022, Vol. XXIX (2)

architectures, which include functional elements with hierarchical interaction, parallel and
concurrent computing architectures and network topologies for distributed computer
systems.

Membrane computing cells being considered systems with artificial intelligence and
cognitive properties implement as rules for data processing both mathematical and logical
models, as well as models based on neural networks, Fuzzy logic and evolutionary
computation.

The paper [15] presents a study of the interaction between membrane computation
and Fuzzy logic theory. Theoretical research is focused on the processing of uncertainties in
P-Systems, the fusion, representation and reasoning of unclear knowledge. Applications of
Fuzzy-membrane computing focus on the representation of Fuzzy knowledge and the
identification of its uncertainties.

Another example is described in paper [16] which examines the use of membrane
computing models to control a group of mobile robots. The topics addressed in the paper are
oriented towards the complexity of the robot and the tasks performed, the development of a
genetic algorithm that uses a high level of abstraction, the design of swarm algorithms using
a top-down approach with real-time operation.

P-Systems computing architectures represent a multitude of homogeneous or
heterogeneous units for data processing. In the paper [17] it was shown that the synchronous
interaction between them plays a decisive role, especially for real-time systems. The paper
investigates synchronous membrane computer systems with communication and division
rules, using the strategy of evolving parallelism together with the synchronization between
uncooperative rewriting rules. As mentioned in the paper [18], in order to achieve maximum
parallelism, a strategy for evolving the topology of the membrane computer system is used
by applying synchronization between the applied rules. The most efficient are the membrane
computer systems that operate in standby or event mode. The efficiency of the
synchronization process is demonstrated by simulating the basic operations (addition,
subtraction, multiplication, and division).

An essential factor in the evolution of membrane computer systems is their cognitive
abilities. The paper [19] explored two methods of applying associative memory for knowledge
storage. In the first method, associative memory is considered a device for memorizing the
process of objects evolution, in which they are constantly updated to monitor the evolution
and circumstances in which they were produced. This model allows the study of the evolution
of the membrane. In the second method, associative memory is considered as a device for
storing previously consumed objects. This model allows describing the dynamics of the object
allocation process.

The field of use of membrane computer systems and models is very wide. The scientific
papers for the last 20 years specify the advantages of applying membrane computation in
such areas as image processing [20], biology, ecology, robotics or engineering [21, 22],
decision-making systems [23, 24], collaborative systems and swarm intelligence [24, 25],
reliable diagnostic systems [26], etc.

In this paper, the authors propose a new method for membrane computation models
implementation in reconfigurable hardware architectures. In order to achieve the established
objectives, were elaborated the algorithm for the synthesis of hardware membrane computer
systems, the functional scheme of the data processing cell based on membrane computing
models, the Petri net model for performance evaluation, the functional model for membrane

S. Munteanu, V. Sudacevschi, V. Ababii 95

Journal of Engineering Science June, 2022, Vol. XXIX (2)

computing structures with complex topology, the model for the formal description of
membrane computing structures with complex topology, the HDL code for cell
implementation in hardware architecture. The validation of the obtained results is performed
based on the diagrams generated as a result of the modelling and simulations of membrane
computing cells implemented into FPGA circuits.

1. Algorithm for synthesis of membrane computer systems implemented in hardware
architectures
The basis of proposed algorithm (Figure 1) for synthesis of the membrane computer

systems implemented in hardware architectures is the multitude of knowledge gained from
various fields of natural sciences (biology, genetics, natural intelligence, etc.) and exact
sciences (physics, mathematics, artificial intelligence, engineering and computer science).

The synthesis of membrane computer systems implemented in hardware architectures
includes the following steps:

Nature Inspired Computing - includes the analysis and mathematical and behavioural
description of Swarm Computing models and the association of physiological and chemical
processes performed in living cells with models and the formal description of computational
processes for the implementation of membrane architecture in hardware architecture;

Artificial Intelligence - includes providing mathematical and logical models based on
neural networks and Fuzzy logic to implement the knowledge and rules of data processing
performed by the cell. At this stage, optimization models based on genetic algorithms can be
applied, which will ensure the optimization of knowledge and data processing rules;

Cells Computing - based on the accumulated information and specifications for the
membrane computing system, the synthesis of the cell structure scheme is performed. As a
result of this stage, the cell architecture is obtained at the level of functional elements and
data flows;

Cell: Petri Net Modelling - modelling and performance evaluation of the membrane
computing cell through Petri nets [27, 28, 29]. At this stage, parallel and concurrent
processes, resource access conflicts, and the efficiency of the rules synchronization model
are identified. As a result of the performance analysis, graphs are generated that will highlight
the strengths and weaknesses of the cell architecture;

Membrane Computing (P-Systems) - based on the mathematical model or formal
description is developed the topology of the membrane computer system in the form of a Van
diagram which specifies the set of rules made by each membrane and the relationships
between them;

XML (JSON) - based on the Van diagram, a formal description of the topology of the
membrane computer system is presented applying the XML (JSON) formatting language [30].
The result of this operation is a text file that describes the system topology, the inputs and
outputs for each cell, and the identifiers of the cell hardware description files;

P-Systems: Petri Net Modelling - at this stage the performance modelling and
evaluation of the membrane computer system through Petri nets is performed [31, 32, 33].
The purpose of these models is to optimize the synchronization process between the system
cells and their rules. As a result of modelling, time graphs and diagrams are generated;

P-Systems: HDL - cell implementation (P-Systems) in hardware architecture based on
HDL [34]. As a result of code compilation in the Intel Quatrus Prime 19.1 Design Software

96 Computer systems synthesis inspired from biologic cells structures

Journal of Engineering Science June, 2022, Vol. XXIX (2)

[35] design tool, the wiring diagram, the files for the configuration of the FPGA circuit and
the time diagrams of the membrane computer system are obtained;

Figure 1. Algorithm for synthesis of membrane computer systems implemented in
hardware architectures.

FPGA - loading the configuration code into the FPGA circuit [36] which is then used to
control a robotic process which was used to formulate the specifications of the synthesis
process of membrane computer systems.

2. Synthesis and modelling of computing cells
Computing cells represent a set of smart and autonomous elements for data

processing. The data processing algorithm is determined by the set of rules obtained as a
result of adapting the knowledge gained during the evolution of the cell. The interaction
between the cells and the topological structure determines the algorithmic complexity of the
membrane computing system. The synthesizing process of the computing cell structure
requires the analysis of the chemical and physiological processes that take place in living
cells and the tasks that are performed by it. A membrane computing system forms a collective
intelligence (Swarm Intelligence) and can be composed of homogeneous or heterogeneous

S. Munteanu, V. Sudacevschi, V. Ababii 97

Journal of Engineering Science June, 2022, Vol. XXIX (2)

computing cells. In the paper the synthesis of a general cell structure that can serve as a
model for the synthesis of cells oriented towards certain specific fields of application is
proposed.

The computing cell (Figure 2) consists of the following components:
Environment - the cell activity environment that delivers input data for the cell activity

and reacts to the actions applied as a result of data processing;
()X t - input data or activity environment state;

Filtering (I) - the input data filtering mechanism that selects only certain data and
allows them to enter into the cell to be processed;

Fuzzification – Fuzzy operations for input data that generate the set of events for
processing;

Associative Memory (I) - associative memory for storing the list of input events;
[]X T - the list of events waiting to be processed;

Knowledge - the set of knowledge that forms the rules of data processing;
[]Op T - the set of elementary operations defined by the set of rules for data processing

(events);
ALU - the block for performing arithmetic and logic operations according to the set,

defined by the applied rule;
[]Y T - list of events (decisions and actions) obtained as a result of data processing;

Associative Memory (O) - associative memory for storing the list of output events. After
processing the input and output events they are removed from the lists;

Filtering (O) - the output data filtering mechanism that selects events to be moved at
the output of the computing cell;

De-Fuzzification - turns the list of output events into action data or communication
with the environment;

()Y t - action or communication data with the environment;

Synchronization - the synchronization block of the operations performed by the
computing cell.

Figure 2. Computing Cell diagram.

98 Computer systems synthesis inspired from biologic cells structures

Journal of Engineering Science June, 2022, Vol. XXIX (2)

Functional validation and performance evaluation of computing cells was performed
based on the Petri net model shown in Figure 3. For this purpose, the following functions
performed by the model cell were identified:

1. The cell receives from the activity Environment two state values () () (){ }1 2,=X t x t x t

modelled by timed transitions { }1 2,t t ;

2. The events [] ()1 1 4≥X T x t and [] ()2 2 6≥X T x t are identified by the Fuzzification

which are modelled by transitions { }3 4,t t and arcs { }1 3,p t with weights 4 and 6, respectively;

3. Associative Memory (I) stores two values of events [] [] []{ }1 2,=X T X T X T and is

modelled by places { }3 4,p p ;

4. Places 12p and 13p monitors the waiting time to serve the events

[]1 (1)X T Time Delay and []2 (2)X T Time Delay , being synchronized by timed transitions

{ }13 14,t t ;

5. The ALU block is modelled by place 5p and synchronized by { }5 8, 7,t p t to serve the

events []1X T , and respectively synchronized by { }6 9, 8,t p t to serve the events []2X T , where

7t and 8t are timed transitions;

6. The places 14p - Event Processing (1) and 15p - Event Processing (2) monitor the served

events []1X T and []2X T ;

7. The places { }6 7,,p p model the Associative Memory (O) in which two values of the

output events are stored [] [] []{ }1 2,=Y T Y T Y T ;

8. The De-Fuzzification block is modelled by combinations { }10, 11p t and { }11, 12p t which

transforms the output events []1Y T and []2Y T into pulse sequences ()1 8=y t n and

()2 10=y t n , where 11t and 12t there are timed transitions.

Figure 3. Petri Net model for Computing Cell validation and performance evaluation.

Fuzzification
Associative
Memory (I) ALU Associative

Memory (O)

De-Fuzzification

Time
Delay (1)

Time
Delay (2)

Event
Processing (1)

Event
Processing (2)

S. Munteanu, V. Sudacevschi, V. Ababii 99

Journal of Engineering Science June, 2022, Vol. XXIX (2)

The VPNP application, developed at the Department of Computer Science and Systems
Engineering by the university professor Emilian Guțuleac [37], was used for the functional
validation and evaluation of the computing cell performance.

3. Synthesis and modelling of the membrane computing (P-Systems) architecture
As mentioned above, the synthesis of the membrane computing system topology (P-

Systems) depends on the specific of the solved problem and its algorithmic complexity. The
purpose of the synthesis is to obtain a computing architecture with maximum parallelism and
minimal concurrency in data processing and resources accessing.

Figure 4. Membrane computing (P-Systems) architecture.

Figure 4 shows the synthesis result of a calculation membrane topology using Van
diagram format that includes the following specifications:

1. The set of rules for data processing { }1 2 8, ,...,=R R R R that also determine the name

of the calculation cell;
2. The set of elementary membranes { }4 5 6 7 8, , , ,R R R R R ;

3. The set of complex membranes { }1 2 3, ,R R R ;

4. Concurrent / parallel processes { }2 6 7 8, , ,R R R R and { }3 4,R R ;

5. Sequential processes { }{ }{ }{ }1 2 3 5 4 6 7 8: : : , , , ,R R R R R R R R ;

Skin external membrane that communicates with the business environment.
The Petri net model for validation and performance evaluation of the membrane

computing architecture is presented in Figure 5.
The Petri net model includes the following elements:
1. The calculation cell 1R modelled by the timed transition 1t (generator of external

events) and place 1p (memory for the accumulation of events generated by the activity
environment);

2. The set of computing cells { }2 2 2 6 6: , , ,R t p t p , { }6 3 3 7 7: , , ,R t p t p , { }7 4 4 8 8: , , ,R t p t p and

{ }8 5 5 9 9: , , ,R t p t p , which operate in parallel / concurrently, where: { }2 3 4 5, , ,t t t t are transitions

100 Computer systems synthesis inspired from biologic cells structures

Journal of Engineering Science June, 2022, Vol. XXIX (2)

for validating event processing, { }2 3 4 5, , ,p p p p are places for events modelling accepted for

processing by that cell, { }6 7 8 9, , ,t t t t are timed transitions that model the data processing time

required for each calculation cell, { }6 7 8 9, , ,p p p p are places that model the end of the data

processing performed by the respective cell;

Figure 5. Modelling of membrane computing (P-Systems) architecture.

3. The set of computing cells { }3 10 10 12 12: , , ,R t p t p and { }4 11 11 13 13: , , ,R t p t p , where:

{ }10 11,t t there are transitions that model the distribution of events to those cells, { }10 11,p p

there are places that indicate that the cell is processing the data, { }12 13,t t there are timed

transitions that model the data processing time by that cell, { }12 13,p p are places that model

the end of data processing by that cell;
4. The cell { }5 14 14: ,R t p where 14t is a timed transition that models the data processing

time and 14p is the place that models the end of the cell data processing;

5. Timed transition 15t and place 15p model the synchronization process between cells

{ }3 4 5, ,R R R ;

6. The cell { }1 16 16 17: , ,R t p t model the action of the membrane computing architecture

on the activity environment, where the place 17p indicates the number of processed events.
In order to achieve the circuit of the membrane computing system presented in the form of
a Van diagram, it is proposed to use a formal description model in JSON format [30]. The
purpose of these transformations is to gradually move from the Van diagram presentation of
the membrane computing system to the HDL hardware description code. Figure 6 shows the
result of this operation for the example analysed in Figure 4.

Description of the JSON code for membrane computing system formatting:
1. "Membrane_Computing" - the name of the main object that integrates the architecture

of the membrane computing system in a logical structure;
2. "Cell_Name" - the name of the cell, obtained from the Van diagram that describes the

topology of the membrane computing system;

R1

R1

R2

R6

R7

R8

R3

R4

R5

S. Munteanu, V. Sudacevschi, V. Ababii 101

Journal of Engineering Science June, 2022, Vol. XXIX (2)

{ // JSON model for Membrane Computer systems
// Synthesis Inspired from Biologic Cells Structures
"Membrane_Computing" : { // Cell_R1 definition

"Cell_Name" : "Cell_R_1",
"Cell_Type" : "Cell_Type_1",

"Input" : {"Input_1" : "IValue_1"},
"Output" : {"Output_1" : "OValue_1"},
"Knowledge" : {

"Data" : ["KData_1"],
"Methods" : "e:/Cells_Device/R_1.inc"

},
"Cell_2" : { // Cell R2 definition
"Cell_Name" : "Cell_R_2",
"Cell_Type" : "Cell_Type_2",
"Input" : {"Input_1" : "IValue_1"},
"Output" : {"Output_1" : "OValue_1"},
"Knowledge" : {

"Data" : ["KData_2"],
"Methods" : "e:/Cells_Device/R_2.inc"

},
"Cell_3" : { // Cell R3 definition
"Cell_Name" : "Cell_R_3",
"Cell_Type" : "Cell_Type_3",
"Input" : {"Input_1" : "IValue_1"},
"Output" : {"Output_1" : "OValue_1"},
"Knowledge" : {

"Data" : ["KData_3"],
"Methods" : "e:/Cells_Device/R_3.inc"
},

"Cell_5" : { // Cell R5 definition
"Cell_Name" : "Cell_R_5",
"Cell_Type" : "Cell_Type_5",
"Input" : {"Input_1" : "IValue_1"},
"Output" : {"Output_1" : "OValue_1"},
"Knowledge" : {

"Data" : ["KData_5"],
"Methods" : "e:/Cells_Device/R_5.inc"
}}},

"Cell_4" : { // Cell R4 definition
"Cell_Name" : "Cell_R_4",
"Cell_Type" : "Cell_Type_4",
"Input" : {"Input_1" : "IValue_1"},
"Output" : {"Output_1" : "OValue_1"},
"Knowledge" : {

"Data" : ["KData_4"],
"Methods" : "e:/Cells_Device/R_4.inc"
}}},

"Cell_6" : { // Cell R6 definition
"Cell_Name" : "Cell_R_6",
"Cell_Type" : "Cell_Type_6",
"Input" : {"Input_1" : "IValue_1"},
"Output" : {"Output_1" : "OValue_1"},
"Knowledge" : {

"Data" : ["KData_6"],
"Methods" : "e:/Cells_Device/R_6.inc"

}},
"Cell_7" : { // Cell R6 definition
"Cell_Name" : "Cell_R_7",
"Cell_Type" : "Cell_Type_7",
"Input" : {"Input_1" : "IValue_1"},
"Output" : {"Output_1" : "OValue_1"},
"Knowledge" : {

"Data" : ["KData_7"],
"Methods" : "e:/Cells_Device/R_7.inc"

}},
"Cell_8" : { // Cell R6 definition
"Cell_Name" : "Cell_R_8",
"Cell_Type" : "Cell_Type_8",
"Input" : {"Input_1" : "IValue_1"},
"Output" : {"Output_1" : "OValue_1"},
"Knowledge" : {

"Data" : ["KData_8"],
"Methods" : "e:/Cells_Device/R_8.inc"

}}}}

Figure 6. JSON format for membrane computing architecture description.

3. "Cell_Type" - the type of cell that represents a specification of it (ordinary, complex,
etc.);

4. "Input" – specification of the input variables for the respective cell;
5. "Output" - specification of the output variables for the respective cell;
6. "Knowledge" - the specifications of the object for the description of the knowledge that

will present the rules of data processing;
7. "Date" - the list of knowledge set for the initial state of the cell;
8. "Methods" - the name of the file and the path to it for implementing the rules of data

processing.

4. HDL synthesis of membrane computing architecture
As an example for the synthesis of a membrane computing architecture using HDL

code, it is proposed to design a computing cell with input variable ()X t and output variable
()Y t , where:

[] { } [] { }{ }1 2() 0000,...,0111 , 1000,...,1111= ∈ ∈X t X T X T ,

[] [] []1 1:∀ →X T Op T Y T and [] [] []2 2:∀ →X T Op T Y T .

102 Computer systems synthesis inspired from biologic cells structures

Journal of Engineering Science June, 2022, Vol. XXIX (2)

As a result of the application of the broadcasting operations, the transformations
[]1 1()Y T Y t→ and []2 2 ()Y T Y t→ will take place, where 1()Y t and 2 ()Y t are the sequence of

synchronization signals with a number proportional to the respective variables []1X T and

[]2X T . The HDL description code of the computing cells is shown in Figure 7.

SUBDESIGN Celula
(

clk, load, ena, clr, fuzzy[3..0] : INPUT;
yt1, yt2, q_yt1[3..0], q_yt2[3..0] : OUTPUT;

)
VARIABLE

xt1, xt2 : NODE;
z_yt1, z_yt2 : NODE;
count_yt1[3..0] : DFF;
count_yt2[3..0] : DFF;

BEGIN
TABLE -- Fuzificztion

fuzzy[3..0] => xt1, xt2;
B"0XXX" => 1, 0;
B"1XXX" => 0, 1;

END TABLE;
count_yt1[].clk = clk;
count_yt1[].clrn = !clr;
count_yt2[].clk = clk;
count_yt2[].clrn = !clr;

-- Function 1
IF (xt1 & load) THEN

count_yt1[].d = fuzzy[];
ELSIF ((count_yt1[3].q # count_yt1[2].q # count_yt1[1].q # count_yt1[0].q) & ena) THEN

count_yt1[].d = count_yt1[].q - 1;
ELSE

count_yt1[].d = count_yt1[].q;
END IF;
yt1 = count_yt1[0].q;
q_yt1[] = count_yt1[].q;

-- Function 2
IF (xt2 & load) THEN

count_yt2[].d = fuzzy[];
ELSIF ((count_yt2[3].q # count_yt2[2].q # count_yt2[1].q # count_yt2[0].q) & ena) THEN

count_yt2[].d = count_yt2[].q - 1;
ELSE

count_yt2[].d = count_yt2[].q;
END IF;
yt2 = count_yt2[0].q;
q_yt2[] = count_yt2[].q;

END;

Figure 7. The HDL code of Cell.

Figure 8 shows the logic diagram of the cell obtained as a result of compiling the HDL
code using the Intel Quatrus Prime 19.1 development environment.

Figure 9 shows the graphical symbol of the cell with the input and output signals of
the cell obtained as a result of HDL code compilation in the Intel Quatrus Prime 19.1
development environment.

Specification of the input signals (Figure 8 and 9):
1. clk - clock signal synchronizes the data processing;
2. load - loading data into the associative input memory of the cell;
3. ena - validation of data processing;
4. clr - deleting data from associative memory;
5. fuzzy [3..0] - the binary code of the input data.

S. Munteanu, V. Sudacevschi, V. Ababii 103

Journal of Engineering Science June, 2022, Vol. XXIX (2)

Figure 8. The logic circuit obtained from HDL code.

Figure 9. The Cell symbol.

Specification of the output signals (Figure 8 and 9):
1. yt1 - pulse sequence;
2. yt2 - pulse sequence;
3. q_yt1 [3..0] - the binary code from the associative output memory;
4. q_yt2 [3..0] - the binary code from the associative output memory.

104 Computer systems synthesis inspired from biologic cells structures

Journal of Engineering Science June, 2022, Vol. XXIX (2)

The values of the variables fuzzy [3..0], q_yt1 [3..0] and q_yt2 [3..0] are used to
interconnect the cells according to the JSON file format.

The result of the functional validation of the computing cell, in the form of time
diagram, is shown in Figure 10.

Figure 10. The Time diagram.

Specification of the signals grouped by function:
1. Load Function 2 - uploading data for the function according to the condition

[] { }2() 1000,...,1111X t X T= ∈ ;

2. Data Out 2 - binary code output data []2Y T ;

3. Function 2 - pulse sequence 2 ()Y t ;
4. Load Function 1 - uploading data for function according to the condition

[] { }1() 0000,...,0111X t X T= ∈ ;

5. Data Out 1 - binary code output data []1Y T ;

6. Function 1 - pulse sequence 2 ()Y t .

5. Functional testing of membrane computing cells implemented in HDL models
Functional testing of membrane computing cells implemented in HDL models was

performed based on the Altera DE0 Board kit [38].
 This development kit is equipped with an Altera Cyclone III 3C16 FPGA circuit that

provides the user (designer) with 15,408 LEs and 346 Input / Output pins, enough to test the
example proposed in the paper.

Figure 11 shows the functional structure of the stand for testing membrane computing
models that includes: a personal computer with Intel Quartus Prime development environment
installed and the USB cable for connecting the Altera DE0 Board kit.

 The development kit highlights the areas used in the process of functional testing of
membrane computing models: Binary Switches x 10 - used to enter the input code (variable
values []X T); Binary LEDs x 10 - for displaying in binary code the result of processing the

data performed by the cell (variable values []Y T); 4x7-Segment Display - for displaying the

result of data processing in decimal or hexadecimal code; Extension Headers - for connecting
external input devices and assistive or action devices.

Function 2 Function 1Data Out 1Data Out 2

Load Function 2
Validation

Operation 2 Load Function 1
Validation

Operation 1

S. Munteanu, V. Sudacevschi, V. Ababii 105

Journal of Engineering Science June, 2022, Vol. XXIX (2)

Figure 11. Functional structure of stand for testing of membrane computing models.

Acknowledgments: The results obtained in this paper are part of the research
conducted under the PhD topic "Distributed computational structures based on intelligent
algorithms with cognitive properties".

Conclusion
The paper describes an application proposed by the authors for the design and

implementation of membrane computing systems based on FPGA reconfigurable devices. The
synthesis algorithm of membrane computing systems includes a sequence of activities
involving knowledge in the fields of biology, nature-inspired computing, artificial
intelligence, system modelling, formatting languages, hardware description languages, and
systems design based on FPGA reconfigurable devices. The operating model of the computer
system is inspired by the functioning and interaction of living cells.

The synthesis process includes the following steps: development of the cell structure
diagram for data processing; modelling and evaluating the performance of computing cells
and the topology of the membrane computing system through Petri nets; elaboration of the
Van diagram for the membrane computing system; formal description of the membrane
computation model based on the JSON formatting language; development of the hardware
description code of the cells for data processing and implementation of the cells in
reconfigurable FPGA computing architectures.

For the future, the development of membrane computing systems for the control of a
mobile robot and a robotic arm is planned. The objectives of the research are aimed to
highlight the possibilities of performing operations in parallel, the use of methods of
synchronization and control of concurrency inside the cells and at the level of topology of
the membrane computing system.

References
1. Ridley M. Evolution. Third edition, Blackwell, 2004, 751p. ISBN: 1-4051-0345-0.
2. Futuiama D.J. Evolution. Third edition, Sinauser Associates, 2013, 655p.
3. Păun G., Rozenberg G., Salomaa A. DNA Computing: New Computing Paradigm. Texts in Theoretical Computer

Science (An EATCS Series). Springer, Berlin, Heidelberg. 1998, 409p. ISBN: 978-3-540-64196-4.
4. Siddique N., Adeli H. Nature Inspired Computing: An Overview and Some Future Directions. Cognitive

Computing, 2015, 7: 706-714. DOI: 10.1007/s12559-015-9370-8.

106 Computer systems synthesis inspired from biologic cells structures

Journal of Engineering Science June, 2022, Vol. XXIX (2)

5. De CASTRO, L.N. Fundamentals of natural computing: an overview. Phys Life Rev. 2007; 4: 1–36.
DOI: 10.1016/j.plrev.2006.10.002.

6. Păun Gh. Computing with Membranes. TUCS Report 208. Turku Centre for Computer Science. 1998. ISBN: 978-
952-12-0303-9.

7. Păun Gh., Rozenberg G. A guide to membrane computing. Theoretical Computer Science. 287 (1): 73-100, 2002.
DOI: 10.1016/S0304-3975(02)00136-6. ISSN: 0304-3975.

8. Păun Gh. Introduction to Membrane Computing. Applications of Membrane Computing. Springer Berlin
Heidelberg. pp. 1-42. ISBN: 978-3-540-29937-0.

9. Alhazov A. Communication in Membrane Systems with Symbol Objects. Ph.D. Thesis. Tarragona, Spain:
Universitat Rovira i Virgili, 2006, 218p.

10. Alhazov A. Small Abstract Computers. Habilitation Thesis. Chișinău (RM): Academy of Sciences of Moldova,
2013, 255p.

11. Aman B., Ciobanu G. Membrane Systems with Surface Objects. In: Proceedings of the International Workshop
on Computing with Biomolecules, Wien, Austria, August 27th, 2008, pp. 17-28.

12. Giovitto J.-L., Michel O. The Topological Structures of Membrane Computing. LaMI technical report Nr. 70-2001.
November 2001, France.

13. Dinneen M. J., Kim Y.-B. and Nicolescu R. Synchronization in P Modules. In: Unconventional Computation,
volume 6079 of Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, 2010, pp. 32–44.

14. Dinneen M. J., Kim Y.-B. and Nicolescu R. An Adaptive Algorithm for P System Synchronization. In: Proceedings
of the Twelfth International Workshop on Membrane Computing, (CMC11), Fontainebleau/Paris, France, 2011,
pp. 1–26.

15. Wang T., Zhang G., Perez-Jimenez M.J. Fuzzy Membrane Computing: Theory and Applications. International
Journal of Computers Communications & Control, 2015, Vol. 10(6), pp. 144, DOI: 10.15837/ijccc.2015.6.2080.

16. A Generic Guide for Using Membrane Computing in Robot Control. Advances in Computational Intelligence and
Robots – Membrane Computing for Distributed Control of Robotic Swarms, 2017, pp.86-96. DOI: 10.4018/978-
1-5225-2280-5.ch005.

17. Aman B. On the Efficiency of Synchronized P-Systems. Journal of Membrane Computing, 2022, Springer, ISSN:
2523-8914, DOI: 10.1007/s41965-021-00091-1.

18. Aman B., Ciobanu G. Synchronization of Rules in Membrane Computing. Journal of Membrane Computing, 1,
233-240, 2019, ISSN: 2523-8914, DOI: 10.1007/s41965-019-00022-1.

19. Ciobanu G., Pinna G.M. Memory Associated with Membranes Systems. Journal of Membrane Computing, 3, 116-
132, 2021, ISSN: 2523-8914, DOI: 10.1007/s41965-020-00066-8.

20. Diaz-Pernil D., Gutierrez-Maranjo M.A., Peng H. Membrane computing and Image Processing: a Short Survey.
Journal of Membrane Computing, 1(1), pp. 58-73, 2019, ISSN: 2523-8914, DOI: 10.1007/s41965-018-00002-x.

21. Sanchez-Karhunen E., Valencia-Cabrera L. Modelling Complex Market Interaction using PDP
Systems. Journal of Membrane Computing, 1(1), pp. 40-51, 2019, ISSN: 2523-8914, DOI: 10.1007/s41965-
019-00008-z.

22. Ababii V., Sudacevschi V., Munteanu S., Borozan O., Nistiriuc A., Lasco V. IoT based on Membrane Computing
Models. In: Proceedings of the 13th International Conference on Electromechanically and Energy Systems
(SIELMEN-2021), 7-8 October, 2021, Chisinau, Republic of Moldova, pp. 010-014, ISBN: 978-1-6654-0078-7.
DOI: 10.1109/SIELMEN53755.2021.9600341. (IEEE Catalog Number: CFP21L58-ART).

23. Sosik P. P-Systems Attacking Hard Problems Beyond NP: a survey. Journal of Membrane Computing, 1(3), pp.
198-208, 2019, ISSN: 2523-8914, DOI: 10.1007/s41965-019-00017-y.

24. Munteanu S., Sudacevschi V., Ababii V., Borozan O., Ababii C., Lasco V. Multi-Agent Decision Making System
based on Membrane Computing. In: The 11th IEEE International Conference on Intelligent Data Acquisition and
Advanced Computer systems: Technology and Applications. 22-25 September, 2021, Cracow, Poland, Vol. 2. pp.
851-854. ISBN: 978-1-6654-4210-7, DOI: 10.1109/IDAACS53288.2021.9660971.

25. Orellana-Martin D., Valencia-Cabrera L., Riscos-Nunez A., Perez-Jimenez M.J. Minimal Cooperation as a way
to Achieve the Efficiency in Cell-Like Membrane Systems. Journal of Membrane Computing, 1(2), pp. 85-92,
2019, ISSN: 2523-8914, DOI: 10.1007/s41965-018-00004-9.

26. Zhou N., Wang A. Fault Diagnosis of Transmission Circuit Based on Triangular Interval Valued Fuzzy Spike
Neural Network P-System. Energy Reports, 2022, Vol. 8, pp. 776-784. DOI: 10.1016/j.egyr.2021.11.086.

27. Desel J., Esparsa J. Free Choice Petri Nets. Cambridge University Press, 1995, 244 p. ISBN: 0-521-46519-2.
28. Guțuleac E. Modelarea și Evaluarea Performanțelor Sistemelor de Calcul prin Rețele Petri. UTM, 1999, 267p.

https://en.wikipedia.org/wiki/ISSN_(identifier)
https://doi.org/10.1109/SIELMEN53755.2021.9600341

S. Munteanu, V. Sudacevschi, V. Ababii 107

Journal of Engineering Science June, 2022, Vol. XXIX (2)

29. Diaz M. Petri Nets: Fundamental Models, Verification and Applications. Wiley, 2009, 613p. ISBN: 978-1-84821-
079-0, DOI: 10.1002/9780470611647.

30. JSON. [online]. [accessed 17.11.2021]. Available: https://www.json.org/json-en.html.
31. Bernardini F., Gheorghe M., Romero-Compero F., Walkinshaw N. A Hybrid Approach to Modeling Biological

Systems. WMC8 2007, LNCS 4860, Springer-Verlag, pp. 138-159.
32. Liu F., Heiner M., Yang M. Modeling and Analyzing Biological Systems using Colored Hierarchical Petri Nets

Illustrated by C. Elegans Vulval Development. Journal of Biological Systems, Vol. 22, No. 3, 2014, pp. 463-493,
DOI: 10.1142/S0218339014500181.

33. Liu F., Heiner M. Modeling Membrane Systems using Colored Stochastic Petri Nets. Natural Computing, 2013,
Nr. 12, pp. 617-629, DOI: 10.1007/s11047-013-9367-8.

34. Harris S.L., Harris D. Digital Design and Computer Architecture. RISC-V Edition. ScienceDirect 2021, 564p., ISBN:
978-0-12-820064-3, DOI: 10.1016/C2019-0-00213-0.

35. Intel Quartus Prime Software Suite. [online]. [accessed 21.12.2021]. Available:
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html.

36. Cofer R.C., Harding B.F. Rapid System Prototyping with FPGAs. Accelerating the Design Process. ScienceDirect
2006, 301p., ISBN: 978-0-7506-7866-7, DOI: 10.1016/B978-0-7506-7866-7.X5000-8.

37. Guţuleac E., Boşneaga C., Railean A. VPNP-Software tool for modeling and performance evaluation using
generalized stochastic Petri nets, In: Proceedings of the 6-th International Conference on DAS-2002, 23-25 May
2002, Suceava, România, p. 243-248, ISBN: 973-98670-9-X.

38. Altera DE0 Board. [online]. [accessed 11.01.2022]. Available: https://www.terasic.com.tw/cgi-
bin/page/archive.pl?No=364.

	21. Plămădeală V. Alcoolul și volanul – o combinație periculoasă. În: Materialele conferinţei naţionale ştiinţifico–practice „Transporturi: inginerie, economie şi management”. Chişinău, 17-18 noiembrie 2017, UTM, p. 103 – 117. ISBN 978-9975-45-511-4.
	22. More than 400 pedestrian accidents have been reported since the beginning of the year [online]. General Inspectorate of Police [quote 08.02.2020]. Available: http://politia.md/ro/content/peste-400-de-accidente-cu-implicarea-pietonilor-au-fost-inre...
	23. Pedestrian protection system [online]. Modern car systems © Suslinnicov Alexandr, 2009-2017 [quote 05.01.2020]. Available: http://systemsauto.ru/passive/pedestrian_protection_system.html.
	24. Pedestrian airbag [online]. Modern car systems © Suslinnicov Alexandr, 2009-2017 [quote 05.01.2020]. Available: http://systemsauto.ru/passive/pedestrian_airbag_system.html.
	25. The device and principle of operation of the pedestrian protection system [online]. © 2020 Techautoport.ru [quote 05.01.2020]. Available: https://techautoport.ru/sistemy-bezopasnosti/passivnaya/sistema-zaschity-peshehodov.html.
	26. Pedestrian detection system [online]. Modern car systems © Suslinnicov Alexandr, 2009-2017 [quote 05.01.2020]. Available: http://systemsauto.ru/active/pedestrian_detection.html.
	27. Advanced driver assistance systems (ADAS) [online]. Copyright © 2020 NVIDIA Corporation [quote 05.01.2020]. Available: https://www.nvidia.com/en-sg/self-driving-cars/adas/.
	28. Mosenzov, E., Pedestrian detection system: device, principle of operation [online]. Fastmb Avtozhurnal [quote 05.01.2020]. Available: https://fastmb.ru/auto_shem/3402-sistema-obnaruzheniya-peshehodov-ustroystvo-princip-raboty.html.
	29. Subaru EyeSight. Keen eye [online]. AvtoMir [quote 18.01.2020]. Available: https://www.avtomir.ua/details/tech/subaru-eyesight-zorkiy-glaz/.
	30. System of its emergency braking [online]. Modern car systems © Suslinnicov Alexandr, 2009-2017 [quote 05.01.2020]. Available: http://systemsauto.ru/active/brake_assist.html.
	31. Automatic braking will be added to the list of recommended safety technologies for cars v SSHA [online]. dealerON.ru © 2008 - 2020 [quote 09.01.2020]. Available: http://www.dealeron.ru/news/3370-Avtomaticheskoe-tormozhenie-budet-vnesen-v-spisok-re...
	32. Car night vision system [online]. Modern car systems © Suslinnicov Alexandr, 2009-2017 [quote 05.01.2020]. Available: http://systemsauto.ru/active/night_view.html.
	33. Mosenzov, E., How does a car's night vision system work [online]. Fastmb Avtozhurnal [quote 05.01.2020]. Available: https://fastmb.ru/auto_shem/761-kak-rabotaet-sistema-nochnogo-videniya-avtomobilya.html.
	34. Night vision assistant [online]. © 2020 AUDI AG. All rights reserved [quote 05.01.2020]. Available: https://www.audi-technology-portal.de/en/electrics-electronics/driver-assistant-systems/night-vision-assistant.
	35. The new Ford Focus received five stars following safety tests by Euro NCAP [online]. autoblog.md © 2014-2019. All Rights Reserved [quote 18.01.2020]. Available: https://autoblog.md/video-noul-ford-focus-a-luat-cinci-stele-in-urma-testelor-de-sigur...
	36. LED pointer [online]. © 2000-2020 PRESS obozrenie [quote 17.01.2020]. Available: https://press.try.md/item.php?id=123500.
	37. Philips H4 60/55 Night Guide [online]. © DRIVE2.RU, 2020 [quote 17.01.2020]. Available: https://www.drive2.ru/l/288230376152624075/.

