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Abstract— Electroencephalography as a generally 

accepted method of monitoring the electrical activity of 
brain neurons is widely used both in diseases and in healthy 
conditions. The recorded electrical signal is usually obtained 
from several electrodes located on the scalp. While EEG 
recording techniques are largely standardized, the 
interpretation of some aspects is still an open question. 
There is hardly questionable progress in detecting abnormal 
EEG signals known as seizures.  

A less explored field is the detection and classification of 
non-pathological conditions such as emotional and other 
functional states of the brain. This requires special 
approaches and techniques that have been widely developed 
over the past decade.  

The current paper describes an attempt to use 
algorithmic complexity concepts and tools for EEG 
transformation making it possible to combine this approach 
and machine learning for classification purposes.   
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I. INTRODUCTION  

The goals of using EEG as a monitoring method can 
be summarized as: (a) to help researchers gain a better 
understanding of the brain; (b) to assist physicians 
in diagnosis and treatment choices; (c) to boost brain-
computer interface (BCI) technology [1].  

There are many ways to roughly categorize EEG 
analysis methods. As shown in a review article [2] most 
EEG analysis methods can be divided into four categories: 
(1) time domain, (2) frequency domain, (3) time-
frequency domain, and (4) non-linear methods. There are 
also more recent methods, including machine learning 
(ML). As for specific mathematical signal analysis 
methods, there is a multitude of approaches in every of de 
domains listed above: linear prediction (LP) and 

independent component analysis (ICA), fast Fourier 
transform (FFT), autoregressive (AR) methods, short-time 
Fourier transform (STFT), wavelet transform (WT), etc. 

Since the EEG signal is far from stationarity and may 
contain much noise, linear methods of analysis were 
thought not the best choice, at least in some situations. 
Nonlinear dynamical analysis has been a powerful 
approach to understanding these physiological signals. It 
has been observed that nonlinear dynamics theory will be 
a better approach than traditional time domain and 
frequency domain methods in analyzing and 
characterizing the EEG signals. The collection of non-
linear methods also looks impressive: higher order spectra 
(HOS) techniques, phase space plot (PPS) methods, 
correlation dimension (CD) and fractional dimension (FD) 
methods, largest Lyapunov exponent (LLE), entropy 
estimators, etc. 

Among the non-linear methods, there is a group of 
Entropy estimators (e.g., Spectral entropy (SEn), 
Approximate Entropy (ApEn), Sample entropy (SampEn), 
etc.). Most of them are based on Shannon’s entropy, 
which is also presented as a measure of algorithmic 
complexity (AC) [2,4]. 

However, recent researches question the use of 
Shannon’s entropy as the best (and sometimes even 
appropriate) estimation for algorithmic complexity (AC) 
and the Kolmogorov-Chaitin definition of AC is used 
instead [3,4]. 

The current research is trying to use the algorithmic 
complexity (by Kolmogorov-Chaitin approach) as a 
metric and data representation method for processing the 
data before they are fed to a machine learning algorithm.  
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II. EEG DATA AND PROCESSING METHODS 

A. Data  

The dataset [5] on which this research is based was 
originally collected to study the EEG correlates of mental 
activity during an intense cognitive task (mental 
arithmetic task—serial subtraction). The arithmetic tasks 
in this study involved the serial subtraction of two 
numbers. Each trial started with the oral communication 
of the 4-digit (minuend) and 2-digit (subtrahend) numbers 
(e.g., 4753 and 17, 3141 and 42, etc.). 

In this experiment all subjects were divided into two 
groups: (a) group "G" (or “good counters”) - performing 
good quality count (mean number of operations per 4 
minutes = 21, standard deviation (SD) = 7.4) and (b) 
group "B" (or “bad counters”) - performing bad quality 
count (mean number of operations per 4 minutes = 7, SD 
= 3.6).  

Table 1 and Figure 1 show the general characteristics 
and appearance of the data. 

TABLE I.  GENERAL CHARACTERISTICS OF DATA  

Data source 36 healthy volunteers performing 
an arithmetic task 

 
Data type   

Multimodal multivariate time 
series: EEG and ECG, with 500 

Hz sampling rate 
The volume of the set and 
format 

175 MB 
“.edf” 

The volume of a subset and 
format 

1285-3883 KB 
“.edf” 

Parameters present in data EEG signals from 20 electrodes 
and one-lead ECG 

Data set peculiarities EEG clip duration equal to  
60-180 seconds 

The task to be solved with 
the data 

Two class classification: (a) good 
counters and (b) bad counters 

 
The appearance of the data is shown in Fig.1. 
 

 
Figure 1.  Appearance of EEG and ECG signals. 

Figure 2.   

B. Methods  

A central role in data processing flow in this research 
is assigned to the estimation of Algorithmic (Kolmogorov-
Chaitin) Complexity performed using the Block 
Decomposition Method which comes from the field of 
Algorithmic Information Dynamics [4, 6]. 

Of primary importance here is the definition of 
algorithmic (Kolmogorov–Chaitin or program-size) 
complexity (Kolmogorov, 1965; Chaitin, 1969) [6]:  
 

 
 
that is, the length of the shortest program p that outputs 
the string s running on a universal Turing machine T. 

Algorithmic Information Dynamics (AID) is an 
emerging field of complexity science based on algorithmic 
information theory, which comprises the literature based 
on the concept of Kolmogorov–Chaitin complexity and 
related concepts such as algorithmic probability, 
compression, optimal inference, the universal distribution, 
Levin’s semi-measure, and others. 

AID strives to search for solutions to fundamental 
questions about causality: why a particular set of 
circumstances leads to a particular outcome. In this aspect, 
it essentially differs from traditional statistics. As an 
applied science, AID is a new type of discrete calculus 
based on computer programming and aimed at studying 
causation by generating mechanistic models to help find 
the first principles of physical phenomena, building up the 
next generation of machine learning [6].  

In the AID toolkit, there is a special tool for providing 
reliable estimations to uncomputable functions, namely 
the online algorithmic complexity calculator (OACC) [7], 
which provides estimations of algorithmic complexity and 
algorithmic probability for short and long strings and for 
two-dimensional arrays better than any other traditional 
tool, none of which can capture any algorithmic content 
beyond simple statistical patterns. The OACC uses the 
BDM method [3,7,8], which is based upon algorithmic 
probability defined by the coding theorem method (CTM) 
: 

 
  

The OACC is available as an online version as well as 
standalone packages in R and a number of other languages 
and it is used for respective calculations for the scope of 
the current work. 
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III. DATA PROCESSING STEPS AND THEIR RESULTS  

Each file (subset) in the original data is a “.edf” file 
describing the EEG signal voltage variations for “n 
channels” for 60 to 180 seconds duration. The subset is 
unfolded and a matrix with columns representing “n 
channels/electrodes” and rows denoting observations of 
EEG signal variation over time corresponding to particular 
channels is generated. The resulting matrix is split into a 
series of 20 x 20 (depending on the number of 
channels/electrodes) matrices, keeping the tie with the 
electrodes and time.  Table 2 shows the appearance of a 
fragment of such a matrix (4 channels and 4 observations 
only). 

TABLE II.  APPEARANCE OF AN EEG FRAGMENT (4 

CHANNELS)  

Ch - 1 (μV) Ch - 2 (μV) Ch - 3 (μV) Ch - 4 (μV) 

4.476 -2.741 -2.502 0.095 

1.208 -3.309 -4.418 -0.529 

-2.546 -3.709 -6.411 -1.003 

-6.187 -3.681 -8.03 -1.103 

A. Calculating algorithmic complexity   

These small (i.e., 20 x 20) matrices are binarized 
(using “BASCA” method, “Binarize” package in R) [8]. 
Table 3 shows what the fragment of an original matrix 
above looks like after binarization, with the respective 
thresholds and p-values. 

TABLE III.  BINARIZED MATRIX AND STATISTICS 

Binarized matrix Threshold p-value 

1 0 0 0 2.2855 0.001 

1 0 0 1 -1.9190 0.001 

1 1 0 1 -5.0600 0.001 

0 1 0 1 -4.9340 0.001 

 
The algorithmic complexity (by BDM) of this matrix 

equals 32.7241 bits. Based on (2), for a 20 x 20 matrix the 
AC value will be much higher. The BDM value for each 
such matrix is calculated with BDM values arranged over 
time axis obtaining time series that describe BDM value 
variation over time (Fig. 2).  

 
Figure 3.  BDM value over time in good counter (before – blue line 

and during the test – red line) 

 
Since the volume of data BDM value is to be 

calculated on is large, neither online nor the regular stand-
alone version of the OACC is suitable. For the purpose of 
this research,  the “core” of the R version of OACC was 
extracted and integrated into the data processing flow.  

The binarization and BDM calculation on these large 
data are quite computationally expensive. To address this 
the E2C Amazon Web Service is being used. Considering 
the sampling rate of 500 Hz and the dimension of a small 
matrix (e.g., 20 x 20) described above, 1500 matrices are 
generated with each 60 seconds subset (i.e., 
500Hz*60seconds/20).    

B. Plotting algorithmic complexity  

After calculating the BDM value, it can be plotted 
along the time axis with a total number of steps equal to 
1500, which represents the BDM value over time for a 
particular subject. A detailed explanation of the data 
processing steps is provided in [8]. 

The BDM values are aggregated (using the average of 
ten observations/time steps) to better capture possible 
underlying patterns. As can be seen from Fig.2, the AC 
during the test fluctuates in a much larger range compared 
to the before-the-test AC. 

In order to identify additional patterns that would help 
discriminate EEG before and during the test, EEG clips 
were randomly sampled from groups of good and bad 
counters (10 files from each group). After estimating the 
BDM value for each file (“before-the test” and “during-
the-test”), the BDM value density distribution was 
estimated on mean per-time-step BDM values for each 
group. Figure 3 shows the situation in the good-counters 
group. 
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Figure 4.  BDM values distribution in good counters 

According to the plot above, there is a shift of mean 
BDM to the right (or towards increased complexity). 

In the bad-counters group, the pattern seems to 
differ (Fig. 4). The BDM value distribution curves look 
quite similar. This seems to imply that AC of the brain 
functioning is activity agnostic in this group, or does 
not change depending on the type of brain activity (e.g., 
mental counting, as in this research). 

 
Figure 5.  BDM values distribution in bad counters 

  

IV. DISCUSSIONS AND CONCLUSIONS 

Nonlinear dynamics has been used in neurophysiology 
to understand complex brain activity from EEG signals. 
Although linear methods have been the most commonly 
used in EEG analysis, non-linear approaches have 
expanded their presence as they reveal aspects that cannot 
be measured with linear approaches. However, published 
works in this scientific field are still rare. 

The EEG signals reflect the electrical activity of the 
brain. They are considered to be highly random in nature 
and may contain useful information about the brain state. 
However, it is difficult to get useful information from 
these signals just by observing them. They are basically 
non-linear and nonstationary in nature. Hence, important 

features can be extracted using advanced signal-
processing techniques. This paper describes the effect of a 
mental arithmetic task on the EEG signal using a less 
traditional processing method, namely algorithmic 
complexity estimation. This method allows the extraction 
of hidden information from the signal.  

The main steps for extracting this information are 
presented based on the block decomposition method, 
which is a tool from the newly emerging field of 
algorithmic information dynamics. Although the 
Kolmogorov-Chaitin complexity (as the core of the 
method) apparently resembles the Shannon entropy 
approach as a measure of complexity, they are different, 
and this is explained in detail in [3, 4, 7]. 

According to the results presented in this paper, it 
seems possible to use AC of the brain functioning to gain 
insights into the brain state and use it to potentially 
classify the brain functional state (e.g., 
relaxed/background functioning vs performing a mental 
arithmetic task).  

The EEG signals obtained from two groups of human 
subjects performing mental arithmetic tasks (good and bad 
counters) were split into two groups: (a) before the test 
and (b) during the test, processed and finally analyzed for 
differences using the Kolmogorov-Smirnov test.  

The two-sample Kolmogorov-Smirnov (KS) test for 
good counters provides the following statistics: D = 0.08, 
p-value = 0.0001355. Since the p-value is much less than 
0.05, it can be inferred that the distribution of BDM values 
as a measure of the algorithmic complexity of brain 
functioning differs before and during the arithmetic test 
activity in good counters. 

The statistics for the two-sample KS test in bad 
counters are: D = 0.046, p-value = 0.08367. Since the p-
value is higher than 0.05, it can be concluded that the 
algorithmic complexity of brain functioning in this group 
does not differ regardless of mental activity. 

Thus AC by BDM can be used as a metric that can 
help distinguish between these two groups (i.e. good 
counters vs bad counters). The distance (D) between 
paired (i.e., before and during the test) states for good 
counters is almost twice that for bad counters. But given 
the small value of D in both groups, special care will be 
required when using this approach for specific tasks such 
as machine learning. 
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