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Abstract

Aspects of full favoring of large beneficiaries in apportion-
ments using Hamilton method are discussed. In this aim, the
requirements of full favoring apportionments compliance with
Hamilton method’s solutions were defined. Subsequently, the
AHL algorithm for determining the Hamilton apportionments
which fully favor large beneficiaries is described. Using this al-
gorithm, calculations for two examples were performed. The ob-
tained results confirm the opportunity of using the AHL algorithm
for the generation of Hamilton full favoring apportionments.

Keywords: algorithm, apportionment problem, dispropor-
tionality, Hamilton method, favoring of large beneficiaries.

1 Introduction

Often it is necessary to distribute a given number M of discrete entities
of the same kind among n beneficiaries, in proportion to a numerical
characteristic assigned to each of them Vi, i = 1, n. This is known as
proportional apportionment (APP) problem [1, 2]. The integer char-
acter of this problem usually causes a certain disproportion of the ap-
portionment {xi, i = 1, n} [1, 3], some beneficiaries being favored at
the expense of the others. Such favoring leads to the increase of dis-
proportionality of the apportionment. Therefore, reducing the favoring
in question is one of the basic requirements when is choosing the APP
method to be applied for apportionments.

In this aim, it is needed to estimate this property quantitatively.
One approach is proposed in [5]. Another, the “total (full) favoring”, is
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examined in [6]. In [6], it was shown that the frequency of full favoring
in apportionments, for the widely used Hamilton [3], Sainte-Laguë [3],
d’Hondt [3] and Huntington-Hill [4] methods, is strongly decreasing on
n, becoming approx. 0 at n ≥ 7-10. Aspects of the guaranteed genera-
tion of Hamilton apportionments, which fully favor large beneficiaries
(with higher Vi value) at larger values of n, are examined in this paper.

2 Essence of full favoring in apportionments

The notion of “total (full) favoring” of beneficiaries was introduced in
[6] based on the definition of favoring of large or of small beneficiaries
by an APP method given in [1] (see Definition (1)).

Definition 1. In an apportionment, large beneficiaries are fully favored

if
xi
Vi

>
xj
Vj

, (1)

whenever xi > xj , where (i, j) ∈ {1, 2, 3, . . . , n} [6].

Usually, in one and the same apportionment some large and some
small beneficiaries can be favored and, nevertheless, mainly large or,
on the contrary, mainly small beneficiaries are favored. Therefore, in
[5] it is proposed to use two different notions: “favoring” of large or of
small beneficiaries and “full favoring” of large or of small beneficiaries,
the second being a particular case of the first one. The compliance of
an apportionment with requirements (1) is referred to “full favoring”
of large beneficiaries. The larger notion of “favoring” is used when in
an apportionment large beneficiaries are predominantly favored or, on
the contrary, the small ones in sense of [5].

In order to identify whether apportionments that fully favor large
beneficiaries can be obtained when applying the Hamilton APP
method, it is necessary to know the compliance conditions of this
method with requirements (1).
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3 Compliance of Hamilton apportionments
with requirements (1)

The required apportionments have to be Hamilton’s ones and, at the
same time, be compliant with requirements (1). The conditions for
the compliance of an apportionment with the solution obtained by
Hamilton method (Hamilton apportionment) are defined by State-
ment 1. First, let: Q = V/M ; Vi = aiQ + ∆Vi > 0, i = 1, n;
∆M = (∆V1+∆V2+∆V3+ . . . +∆Vn)/Q, 1 ≤ l ≤ n−1 and xi > xi+1,
i = 1, n− 1. Of course, occur 0 ≤ ∆Vi < Q, i = 1, n.

Statement 1. The necessary conditions for the compliance of an ap-

portionment {xi, i = 1, n}, which fully favors large beneficiaries, with

the solution obtained by Hamilton method are

∆Vi > ∆Vk, i = 1, l, k = l + 1, n. (2)

Indeed, the Hamilton method apportionment rule states [3] that in
addition to the already apportioned ai entities, i = 1, n, the remained
unapportioned ∆M = l entities should be apportioned by one to the
first beneficiaries with the largest ∆Vj value. So, taking into account
that xi > xi+1, i = 1, n− 1, the relations xi = ai + 1, i = 1, l and
xi = ai, i = l + 1, n should take place when favoring large beneficiaries,
and that can be only if occurs (2). �

It should be mentioned that Statement 1 establishes relationships
between beneficiaries of two groups, {i = 1, l and i = l + 1, n}, but not
between beneficiaries within each of these groups if n > 2, needed to
be established when analyzing the full favoring of large beneficiaries
according to requirements (1).

It is well known that overall, on an infinity of apportionments,
Hamilton method doesn’t favor beneficiaries [1, 3]. But it can be par-
ticular Hamilton apportionments which fully favor large beneficiaries.
The respective requirements are defined by Statement 2.

Statement 2. If n > 2 and l = ∆M , the conditions for the compliance

of a Hamilton apportionment {xi, i = 1, n} with the requirement (1) of
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full favoring of large beneficiaries, in addition to the (2) ones, are

∆Vi <
ai
ai+1

∆Vi+1, (3)

where i = l + 1, n − 1 if an > 0 and i = l + 1, n − 2 if an = 0 for

1 = l < n− 1 (Case L1),

∆Vi <
∆Vi+1(ai + 1)−Q(ai − ai+1)

ai+1 + 1
, i = 1, l − 1 (4)

for 1 < l = n − 1 (Case L2) and both, (3) and (4), for 1 < l < n − 1
(Case L3).

Indeed, one has 0 ≤ ∆Vi < Q, i = 1, n. Let’s begin with Case L3,
divided into three subcases:

L3a) xi = ai + 1, xk = ak + 1, i = 1, l − 1, k = i+ 1, l;

L3b) xi = ai + 1, xk = ak, i = 1, l, k = l + 1, n;

L3c) xi = ai, xk = ak, i = l + 1, n − 1, k = i+ 1, n.

In Subcase L3a, according to (1) it should be xi/Vi > xk/Vk, that
is (ai+1)/(aiQ+∆Vi) > (ak+1)/(akQ+∆Vk), i = 1, l − 1, k = i+ 1, l,
from where one has

∆Vi <
∆Vk(ai + 1)−Q(ai − ak)

ak + 1
, i = 1, l − 1, k = i+ 1, l. (5)

Let’s show that requirements (5) are transitive. From (5), for k =
i+ 1 one has

∆Vi <
∆Vi+1(ai + 1)−Q(ai − ai+1)

ai+1 + 1
, i = 1, l − 1 (6)

and, respectively,

∆Vi+1 <
∆Vi+2(ai+1 + 1)−Q(ai+1 − ai+2)

ai+2 + 1
, i = 1, l − 2. (7)
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Taking into account (7), requirement (6) can be transformed as
follows

∆Vi <
(ai + 1)

∆Vi+2(ai+1+1)−Q(ai+1−ai+2)
ai+2+1 −Q(ai − ai+1)

ai+1 + 1

=
∆Vi+2(ai + 1)− Q(ai+1−ai+2)

ai+1+1 (ai + 1)− Q(ai−a+1)
ai+1+1 (ai+2 + 1)

ai+2 + 1

=
∆Vi+2(ai + 1)−Q(ai − ai+2)

ai+2 + 1
, i = 1, l − 2. (8)

So, if relations (6) and (7) take place, then relation (8) occurs, too.
The same way, one can show that occurs

∆Vi <
∆Vi+j(ai + 1)−Q(ai − ai+j)

ai+j + 1
, i = 1, l − 1, j = 1, l − i. (9)

Thus, relations (5) are transitive and can be replaced by the (4)
ones.H

In Subcase L3b, according to (1), it should be xi/Vi > xk/Vk,
that is (ai + 1)/(aiQ + ∆Vi) > ak/(akQ + ∆Vk), i = 1, l, k = l + 1, n,
from where one has ∆Vk(ai+1) > ak(∆Vi−Q). Because of 0 ≤ ∆Vi <
Q and ∆Vk(ai + 1) ≥ 0, the requirements ∆Vk(ai + 1) > ak(∆Vi −
Q), i = 1, l, k = l + 1, n always take place, that’s why Subcase L3b is
not specified in Statement 2.H

In Subcase L3c, according to (1), it should be xi/Vi > xk/Vk,
that is ai/(aiQ+∆Vi) > ak/(akQ+∆Vk), i = l + 1, n− 1, k = i+ 1, n,
from where one has

∆Vi <
ai
ak

∆Vk, i = l + 1, n − 1, k = i+ 1, n (10)

if an > 0 and ∆Vnai > ∆Vian = 0 if an = 0, i = l + 1, n − 1. The last
inequality always takes place, therefore it is not included in (3).

It is easy to show that requirements (10) are transitive. From
(10), one has ∆Vi <

ai
ai+1

∆Vi+1 and ∆Vi+1 < ai+1

ai+2

∆Vi+2, from where

∆Vi <
ai

ai+1

ai+1

ai+2
∆Vi+2 =

ai
ai+2

∆Vi+2. In the same way one can show that
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relations ∆Vi <
ai

ai+j
∆Vi+j, i = l + 1, n − 1, j = 1, n − i occur. Thus,

relations (10) are transitive and can be replaced by the (3) ones.H
The proof for Cases L1 and L2, taking into account proofs for

Subcases L3a and L3c, are trivial. �
When generating apportionments that fully favor large beneficia-

ries, the inequalities

∆Vi >
ai
ai−1

∆Vi−1, i = l + 2, n, l = 1, n− 2, (11)

∆Vi >
∆Vi−1(ai + 1) +Q(ai−1 − ai)

ai−1 + 1
, i = 2, l, (12)

equivalent to the (3) and (4) ones, are also useful.

4 Generating Hamilton apportionments

Based on Statements 1 and 2, the AHL algorithm for the generation
of Hamilton apportionments which fully favor large beneficiaries was
elaborated. According to (11), the lower the value of ∆Vl+1, the lower
the values of ∆Vi, i = l + 2, n. Similarly, according to (12), the lower
the value of ∆V1, the lower the values of ∆Vi, i = 2, l. Taking into
account these observations, in Figure 1 the basic conceptual steps of
the AHL algorithm are shown, considering V > M and that the value
of ∆M is known.

At Steps 3 and 4 of the AHL algorithm, to ∆Vi > 0, i = 1, n minimal
possible values are allocated: at Step 3 – to ∆Vi, i = l + 1, n according
to requirement (11) and beginning with the value of ∆Vl+1 > 0; at Step
4 – to ∆Vi, i = 1, l according to requirement (12) and beginning with
the value of ∆V1 > z = max{∆Vl+1,∆Vl+2,∆Vl+3, . . . ,∆Vn} because
of requirement (2). If after these allocations one has ∆M > l, that is
∆V > ∆U , where ∆U = ∆MQ, then the solution doesn’t exist.

On the contrary, if ∆V < ∆U , then one has to increase ∆V aiming
to reach ∆V = ∆U . Because of requirement (2), it is relevant to
increase first, maximal possible, the values of ∆Vi, i = 1, l beginning
with ∆Vl < Q. This is done at Step 5 according to requirement (4).
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Step 3 according to
 (1

1)Step 6 according to
 (3

)

Step 4 according to
 (1

2)Step 5 according to
 (4

)

1 2 3 l l + 1 n

�Vi

·············· ·················
0

z

x

Requirement (2) 

Requirement (2) 

Figure 1. Basic steps of the AHL algorithm.

But if the equality ∆V = ∆U is not achieved at this step, then the
last possibility to increase the ∆V value is the increase of ∆Vi, i =
l + 1, n values beginning with ∆Vn < x = min{∆Vi, i = 1, l} because
of requirement (2). This is done at Step 6 according to requirement
(3).

It should be mentioned that in Figure 1 a continuous arrow doesn’t
reflect the relation between the values of ∆Vi and ∆Vi−1. It reflects
the relation between ∆Vi and the respective function of:

1) ∆Vi−1 (at Steps 3 and 4), that is ∆Vi > f1(∆Vi−1) according to
requirement (11) and, respectively, the (12) one;

2) ∆Vi+1 (at Steps 5 and 6), that is ∆Vi < f2(∆Vi+1) according to
requirement (4) and, respectively, the (3) one.

The AHL algorithm in details is described below.
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1. Initial data are: V, n, 1 ≤ l ≤ n − 1, 1 ≤ g ≤ ⌈Q/n⌉ and xi >
xi+1, i = 1, n− 1.

2. M := x1+x2+x3+. . .+xn, Q := V/M,∆U := Ql; ai := xi−1, i =
1, l, ai := xi, i = l + 1, n.

3. Based on (11), determining the preliminary, minimal possible,
values of sizes ∆Vi ≥ 0, i = l + 1, n.
3.1. i := l+ 1,∆Vi := ⌊Qai⌋+ 1−Qai. If i = n, then go to Step 4.

3.2. i := i+1,∆Vi := ⌊Qai+∆Vi−1ai/ai−1⌋+g−Qai. If ∆Vi ≥ Q,
then the solution doesn’t exist. Stop.
3.3. If i < n, then go to Step 3.2.

4. Based on (12), determining the preliminary, minimal possible,
values of sizes ∆Vi > 0, i = 1, l.
4.1. z := max{∆Vl+1,∆Vl+2,∆Vl+3, . . . ,∆Vn};∆V := ∆Vl+1 +
∆Vl+2 +∆Vl+3 + . . . +∆Vn.
4.2. i := 1. ∆Vi := ⌊Qai + z⌋ + g − Qai. If ∆Vi ≥ Q, then the
solution doesn’t exist. Stop.
4.3. If i = l, then go to Step 5.
4.4. i := i+1. ∆Vi := ⌊Qai+[∆Vi−1(ai+1)+Q(ai−1−ai)]/(ai−1+
1)⌋+ g−Qai. If ∆Vi ≥ Q, then the solution doesn’t exist. Stop.
4.5. If ∆Vi ≤ z, then it is needed to minimally increase ∆Vi.
∆Vi := ⌊Qai + z⌋ + g − Qai. If ∆Vi ≥ Q, then the solution
doesn’t exist. Stop.
4.6. If i < l, then go to Step 4.4.

5. Based on (4), ensuring ∆M = l by maximal possible increasing,
if needed, the ∆Vi > 0, i = 1, l values.
5.1. ∆V := ∆V +∆V1 +∆V2 +∆V3 + . . . +∆Vl. If ∆V > ∆U ,
then the solution doesn’t exist. Stop.
5.2. If ∆V = ∆U , then the solution is obtained. Go to Step 7.
5.3. y := ∆U −∆V, i := l. If Q−∆Vi > y, then ∆Vi := ∆Vi + y
and the solution is obtained. Go to Step 7.
5.4. h := ∆Vi,∆Vi := ⌈Qal +Q⌉ − g −Qai, y := y −∆Vi + h. If
l = 1, then it is needed to increase the values of ∆Vi, i = l + 1, n.
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Go to Step 6.
5.5. i := i− 1;h := ∆Vi;∆Vi := ⌈Qai + [∆Vi+1(ai + 1)−Q(ai −
ai+1)]/(ai+1 + 1)⌉ − g −Qai. If ∆Vi < Q, then:
5.5.1. If ∆Vi > h + y, then ∆Vi := h + y and the solution is
obtained. Go to Step 7.
5.5.2. y := y −∆Vi + h and go to Step 5.8.
5.6. If Q > h+ y, then ∆Vi := h+ y and the solution is obtained.
Go to Step 7.
5.7. ∆Vi := ⌈Qai +Q⌉ − g −Qai, y := y −∆Vi + h.
5.8. If i > 1, go to Step 5.5.

6. Based on (3), ensuring ∆M = l by the maximal possible increase
of the ∆Vi ≥ 0, i = l + 1, n values.
6.1. x := min{∆Vi, i = 1, l}, i := n, h := ∆Vi. If x > h+ y, then
∆Vi := h+ y and the solution is obtained. Go to Step 7.
6.2. ∆Vi := ⌈Qai + x⌉ − g −Qai, y := y −∆Vi + h.
6.3. If i = l + 1, then the solution doesn’t exist. Stop.
6.4. i := i − 1, h := ∆Vi;∆V i := min{⌈Qai + x⌉; ⌈Qai +
∆Vi+1ai/ai+1⌉} − g − Qai. If ∆Vi > h + y, then ∆Vi := h + y
and the solution is obtained. Go to Step 7.
6.5. y := y −∆Vi + h. Go to Step 6.3.

7. Determining the Vi, i = 1, n values. Vi := Qai + ∆Vi, i = 1, n.
Stop.

The obtained values of Vi, i = 1, n can be checked by applying the
Hamilton method. It should be noted that the affirmations “the solu-
tion doesn’t exist” in the AHL algorithm are approximate, but very close
to reality for g = 1. Parameter g is an integer, the value of which influ-
ences the minimal difference among the xi/Vi − xi+1/Vi+1, i = 1, n − 1
ones: the larger the value of g, the larger the mentioned difference. At
the same time, the smaller the value of g, the higher the probability
that the solution will be obtained.

Algorithm AHL was implemented in the computer application
SIMAP. Examples 1 and 2 using SIMAP are described below.
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Example 1 regarding the generation of a Hamilton apportionment
which fully favors large beneficiaries. Initial data: M = 279;n =
20;∆M = 10;V = 20000; g = 1; the xi, i = 1, n values specified in
Table 1.

Some results of calculus using SIMAP are systemized in Table 1.

Table 1. Calculations for the apportionment to Example 1

i Vi 10−7xi/Vi i Vi 10−7xi/Vi

1 2145 139860 11 932 139485

2 1931 139824 12 789 139417

3 1788 139821 13 718 139276

4 1645 139818 14 575 139130

5 1574 139771 15 504 138889

6 1431 139762 16 433 138568

7 1360 139706 17 289 138408

8 1289 139643 18 217 138249

9 1146 139616 19 145 137931

10 1003 139581 20 86 116279

Example 2 regarding the generation of a Hamilton apportionment
which fully favors large beneficiaries. Initial data are the same as in
Example 1 with the only difference that g = 3. Some results of calcu-
lations using SIMAP are systemized in Table 2.

Data of Tables 1-2 were checked – the obtained apportionments are
Hamilton ones. At the same time they comply with requirements (1).
Thus, they fully favor large beneficiaries.

Comparing data in Tables 1 and 2, one can see that the obtained
values of Vi and xi/Vi, i = 1, n differ. Using different values of g, one
can obtain different solutions.

The minimal difference among the xi/Vi − xi+1/Vi+1, i = 1, n − 1
ones is equal: to 3 if g = 1 and to 172 if g = 3. So, it is confirmed the
fact that the larger the value of g, the larger the mentioned difference.
Thus, if it is needed to increase this difference, one has to increase the
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Table 2. Calculations for the apportionment to Example 2

i Vi 10−7xi/Vi i Vi 10−7xi/Vi

1 2113 141978 11 932 139485

2 1904 141807 12 791 139065

3 1765 141643 13 722 138504

4 1626 141451 14 580 137931

5 1558 141207 15 512 136719

6 1419 140944 16 462 129870

7 1350 140741 17 318 125786

8 1281 140515 18 247 121458

9 1141 140228 19 175 114286

10 1001 139860 20 103 97087

value of g. But the value of g is limited from above by the value of
⌈Q/n⌉ (approximately). In Examples 1 and 2, one has Q = V/M =
20000/279 ≈ 71.7 and ⌈Q/n⌉ = ⌈71.7/20⌉ = 4. However, the attempt
to obtain the solution using SIMAP for initial data of Examples 1 and
2 at g = 4 was unsuccessful.

5 Conclusions

In order to determine Hamilton apportionments which fully favor large
beneficiaries, the AHL algorithm was elaborated. It guarantees the so-
lution (if it exists), regardless of the value of n. Two examples of gener-
ating of such apportionments at n = 20 using the computer application
SIMAP are described. In this context, it should be noted that in all 25
million variants of initial data with n = 20, for which the Vi, i = 1, n
values were generated stochastically at uniform distribution, none of
the Hamilton apportionments fully favors the beneficiaries.

At the same time, it was identified that the results of calculations
considerably depend not only on initial data V, n, 1 ≤ ∆M ≤ n−1 and
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xi, i = 1, n, but also on parameter g value of the AHL algorithm. The
higher the g value (1 ≤ g ≤ ⌈Q/n⌉), the larger the minimal difference
among the |xi/Vi−xi+1/Vi+1|, i = 1, n− 1 ones. But the maximal value
of g, for which it is possible to obtain the solution, strongly depends
on the value of ∆M , being small at small or large values of ∆M and
large – at medium values of ∆M in the interval [1; n – 1].
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