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Introduction 
 
Often it is necessary to distribute a given number M of discrete entities of the 

same kind among n beneficiaries, in proportion to a numerical characteristic assigned 
to each of them Vi, . This is known as proportional apportionment (APP) 
problem [1-3]. The integer character of this problem usually causes a certain 
disproportion of the apportionment {xi, } [1, 4, 5], some beneficiaries being 
favored at the expense of the others. Such favoring leads to the increase of 
disproportionality of the apportionment. Therefore, reducing the favoring in question 
is one of the basic requirements when is choosing the APP method to be applied for 
apportionments.  

As it is well known, the d’Hondt method [6] favors large beneficiaries (with 
larger Vi value) [1, 4, 7, 8], and Huntington-Hill method [9] favors the small ones 
(with smaller Vi value) [4, 10]. But which of the two favors beneficiaries to a larger 
extent? Preferences, in this sense, between methods, can help. Par example, in [11], 
five APP methods are placed „in the order as they are known to favor larger parties 
over smaller parties”. However, the best way is to estimate this property 
quantitatively. One approach in this aim is proposed in [12]. Another, the “ total (full) 
favoring”, based on the definition of favoring of large beneficiaries or of the small 
ones by an APP method done in [1], is examined in [15, 16]. In [15], it was shown 
that the frequency of full favoring in apportionments, for the widely used Hamilton 
(Hare) [13], Sainte-Laguë (Webster) [14], d’Hondt (Jefferson), Huntington-Hill and 
Adapted Sainte-Laguë methods, is strongly decreasing on n, becoming approx. 0 at n 
≥ 7÷10. In [16], the conditions of linear divisor methods’ (LDMs’) apportionments 
compliance with the requirements of full favoring of large beneficiaries or of the 
small ones were determined. Also, the A1 algorithm for determining the LDMs’ 
apportionments which fully favor beneficiaries was elaborated and some examples 
with the use of this algorithm were given. This algorithm is simple, but it doesn’t 
guarantee the obvious solution. Aspects of the guaranteed generation of LDMs’ 
apportionments, which fully favor large beneficiaries or the small ones, are examined 
in this paper. 
 
 

9.1. Essence of favoring and of full favoring of beneficiaries in apportionments 
 
The essence of favoring of beneficiaries in apportionments is described in such 

papers as [4, 7, 10]. In [12], for example, three notions of favoring of beneficiaries by 
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an APP method are distinguished: 
a) favoring of a beneficiary in an apportionment; 
b) favoring of large beneficiaries or of the small ones in an apportionment; 
c) favoring of large beneficiaries or of the small ones overall by an 

apportionment method. 
It is considered that a beneficiary i is favored if a larger number xi of entities is 

distributed to him than would be due according to the Vi value, more precisely if xi > 
MVi /V, where M = x1 + x2 + … + xn and V = V1 + V2 + … + Vn. Of course, the lack of 
favoring is possible only if the equalities ai = MVi/V,   take place; here ai = 
MVi/V, where z means the integer part of the real number z. In practice, such 
equalities rarely occur and that is why some beneficiaries are favored and others, 
respectively, are disfavored. The notation ΔM =M – a1 + a2 + … + an will also be 
used. 

In formalized form, the first, probably, definition of favoring of large 
beneficiaries or of the small ones by an APP method is given in [1]. But the 
requirements of this definition are very strong - no methods compliant to them and 
used in practice are known. At the same time, as mentioned in [15], these conditions 
can be used to identify the “full favoring” of large beneficiaries or of the small ones 
in concrete apportionments. Also, in [12], the conditions of the respective definition 
in [1] were simplified, reducing considerably the volume of needed calculations for 
computer simulation (see Definition 1). 

Definition 1. In an apportionment, large beneficiaries are fully favored if  
 

 
(1) 

and small beneficiaries are fully favored if 
 

 
(2) 

whenever xi > xj, where i and j take values from the {1, 2, 3, …, n} ones [12]. 
Usually, in one and the same apportionment some large and some small 

beneficiaries can be favored and, nevertheless, mainly large or, on the contrary, small 
beneficiaries can be favored. Therefore, in [12] it is proposed to use two different 
notions: “favoring” of large or of small beneficiaries and “full favoring” of large or of 
small beneficiaries, the second being a particular case of the first one. The 
compliance of an apportionment with requirement (1) or with the (2) one is referred 
to “full favoring” of large beneficiaries or, respectively, of the small ones. The larger 
notion of „favoring” of large beneficiaries or of the small ones is used when in an 
apportionment are predominantly favored large beneficiaries or, on the contrary, the 
small ones in sense of [12]. 

In order to identify whether apportionments that fully favor large beneficiaries 
or the small ones can be obtained when applying an APP method, it is necessary to 
know the compliance requirements of the APP method in question with requirement 
(1) or, respectively, the (2) one.  
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9.2. Compliance of LDMs’ apportionments with requirements (1) or (2) 
 
From the multitude of APP methods, there some linear divisor methods [8] are 

examined. The conditions for compliance of LDMs’ apportionments, at c > 0 and, 
separately, at c ≥ 1, with requirements (1) or the (2) one were defined in [16]. Also, 
as shown in [16], at c > 0 no one of linear divisor methods is always compliant with 
the requirement (1) of full favoring of large beneficiaries and with the requirement 
(2) of full favoring of small beneficiaries. So, it is of interest to study apportionments 
that fully favor beneficiaries. 

It is well known that d’Hondt method (c = 1) strongly favors large beneficiaries 
[4, 7]. At the same time, the lower is the value of c, the greater is the grade of 
favoring of large beneficiaries by the respective linear divisor method [8]. That's why 
below only cases with c ≥ 1 are considered. Also, it is easier to analyze 
apportionments when beneficiaries are ordered by Vi,  values or the xi, 

 ones. Evidently, for “proportional” apportionments examined in this paper, if 
xi > xi+1,  then the relations Vi > Vi+1,  occur, too. 

The conditions for compliance of linear divisor methods’ apportionments, at c ≥ 1 
and xi > xi+1, , with requirements (1) or the (2) one are, respectively, [16]: 

 

(3) 

and 

 

(4) 

 
 

9.3. Generating apportionments that fully favor large beneficiaries 
 
According to [16], one of the ways of determining apportionments which fully 

favor large/small beneficiaries, for linear divisor methods with c ≥ 1, is the following. 
Starting from {V1, xi > xi + 1, } values and using formula (3) or, 
respectively, the (4) one and a special iterative algorithm, one can obtain the set of Vi, 

 values and, thus, the apportionment that corresponds to requirement (1) or, 
respectively, to the (2) one of Definition 1.  

A simple algorithm (A1), which for small values of n can be easy implemented 
using a table processor, for example, Microsoft Excel, is described in [16]. But this 
algorithm doesn’t guarantee the obvious solution. They guarantee the solution (if it 
exists), regardless of the value of n, the relatively laborious A2 and A3 algorithms, 
described below.  

Let’s begin with algorithm A2 for the generating of apportionments that fully 
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favor large beneficiaries. Because initially only the {V1, xi > xi+1, } 

values are known, in requirement (3) the factor of the first 

inequality left side and the factor Vi+1xi/xi+1 of the second inequality right side are not 
known. Because of xi > xi + 1, , one has Vi > Vi+1,  and basing 
on (1) to Vi,  can be preliminary assigned minimal possible values Vi = Vi-1 

xi/xi-1 + 1, . If for at list one of the beneficiaries  occurs Vi ≥ Vi-1, then 
the solution doesn’t exist. Otherwise, taking into account requirement (3), the current 
Vi lower limit (Vi min) can be determined as  

 
(5) 

and the Vi high limit (Vi max) can be determined as 

 
(6) 

Similarly, instead of minimal possible values preliminary assigned to Vi, 
, one can use maximal possible values Vi = Vi-1 – 1,  preliminary 

assigned to them. If for at least one of beneficiaries the relation Vi = Vi-1 – 1 <  Vi-1 

xi/xi-1 + 1 occurs, that is Vi-1(xi-1 – xi)/xi-1 < 2, then the solution doesn’t exist. 
Thus, algorithm A2 for determining apportionments of full favoring of large 

beneficiaries by linear divisor methods consists in the following. Initially, the Vi, 
 values are determined using g = 0 (minimal possible values), after they are 

determined using g = 1 (maximal possible values) and the final values, for stability, 
are determined as the arithmetic mean of the first two values for each Vi, . Of 
course, one can use another value for g. 
1. Initial data are: c, n, V1, xi > xi+1, . g = 0. 
2. Determining the values of sizes Vi,  basing on requirement (1) only. Thus, 

for , assigning to Vi a value in the range [Vi-1 xi/xi-1 + 1; Vi-1   – 1]: 
2.1. If Vi-1 – Vi-1 xi/xi-1 < 2, then the solution doesn’t exist. Stop. 
2.2. Vi = Vi-1 xi/xi-1 + 1 + g(Vi-1 – Vi-1 xi/xi-1 – 2). 

3. Concretizing the values of sizes Vi,  by taking into account the value of V1 
and the requirements of the used apportionment method. Because of Step 2.2, the 
V1 value is compliant with requirement (6), that is the relation V1 ≤ V1 max occurs. 
Checking the compliance of V1 value with requirement (5), that is if the relation V1 
≥ V1 min occurs. Thus, for : 
3.1. If V1 > Vi[c(x1 – 1) + 1]/(cxi + 1), then V1 and Vi are compliant, i := i + 1 and 

repeat Step 3.1. 
3.2. The Vi value is too large. If g = 0, then the solution doesn’t exist, because the Vi 

preliminary value is the minimal possible one. Stop.  
3.3. Reducing the Vi value, but assigning to it a maximal possible value with refer 

to V1. Thus, Vi = V1(cxi + 1)/[c(x1 – 1) + 1] – 1. If Vi > Vi-1 xi/xi-1, then i := i + 
1 and go to Step 3.1. 

3.4. The Vi-1 value is too large. If i = 2, then the solution doesn’t exist, because Vi-1 
= V1. Stop. 
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3.5. Reducing the Vi-1 value (and may be those of the Vj,  ones), but 
assigning to it a maximal possible value with refer to Vi. Thus, for  
in decreasing order, that is Vj = Vj+1 xj/xj+1 – 1. If Vj > Vj-1 xj/xj-1, then i := i + 1 
and go to Step 3.1. 

3.6. If V2 ≤ V1x2/x1, then the solution doesn’t exist because the V1 value can’t be 
reduced. Stop. 

4. The preliminary values of sizes Vi,  were determined, being the maximal 
possible one for the used g value; concretizing them (Steps 5-8). Thus, i = 2. Vn+1 = 0. 

5. Determining Vi min according to (5) and Vi max according to (6). Assigning to Vi a 
value in the range [Vi min, Vi max], the Vi max value being the maximal possible one for 
the used g value.  
5.1. If Vi min ≤ Vi max, then go to Step 5.4. 
5.2. The Vi min value is too large. If g = 0, then the solution doesn’t exist, because 

the Vi min value can’t be reduced. Stop. 
5.3. Reducing the Vi+1 value, but assigning to it a maximal possible value with refer 

to Vi, that is Vi+1 = Vi(cxi+1 + 1)/[c(xi – 1) + 1] – 1. If Vi+1 ≤ Vixi+1/xi, then the 
Vi+1 value is too small. The solution doesn’t exist, because Vi+1 can’t be 
increased. Stop. 

5.4. Vi = Vi min + g(Vi max – Vi min).  
6. If i < n, then actualizing Vk,  by assigning to them values in the range 

[Vk-1 xk/xk-1 + 1; Vk-1 – 1]. Thus, for : 
6.1. If Vk-1 – Vk-1 xk/xk-1 < 2, then the solution doesn’t exist. Stop. 
6.2. Vk = Vk-1 xk/xk-1 + 1 + g(Vk-1 – Vk-1 xk/xk-1 – 2). 

7. Checking the sizes Vj,  values compliance with requirement (3), taking into 
account the new values of sizes Vk, . They are compliant with 
requirement (6), that is Vj ≤ Vj max,  occur. 
7.1. Checking the V1 value compliance with requirement (5), that is if the relation 

V1 ≥ V1 min occurs. Thus, for : 
7.1.1. If V1 > Vj[c(x1 – 1) + 1]/(cxj + 1), then j := j + 1 and repeat Step 7.1.1. 
7.1.2. The Vj value is too large. If g = 0, then the solution doesn’t exist, because 

the Vj value is the minimal possible one. Stop. 
7.1.3. Reducing the Vj value by assigning to it a maximal possible value with 

refer to V1, that is Vj = V1(cxj + 1)/[c(x1 – 1) + 1] – 1. If Vj > Vj-1 xj/xj-1, 
then j := j + 1 and go to Step 7.1.1. 

7.1.4. The Vj-1 value is too large. If j = 2, then the solution doesn’t exist, because 
Vj-1 = V1. Stop. 

7.1.5. Reducing the Vj-1 value (and may be those of the Vj,  ones), but 
assigning to it a maximal possible value with refer to Vj. Thus, for 

 in the decreasing order: 
7.1.6. Vk = Vk+1 xk/xk+1 – 1. If Vk > Vk-1 xk/xk-1, then j := j + 1 and go to Step 

7.1.1. 
7.1.6.1. The Vk-1 value is too large. If k > 2, then k = k – 1 and go to Step 

7.1.5.1. 
7.1.6.2. If V2 ≤ V1x2/x1, then the solution doesn’t exist because the V1 value 
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can’t be reduced. Stop. 
7.2. Checking the Vj,  values compliance with requirement (5), that is if the 

relations Vj ≥ Vj min,  occur. Thus, for : 
7.2.1. If Vj > Vj min, where Vj min is determined according to (5), then j := j + 1 and 

repeat Step 7.2.1. 
7.2.2. The Vj+1 value is too large. If g = 0, then the solution doesn’t exist, 

because the Vj+1 value is the minimal possible one. Stop. 
7.2.3. Reducing the Vj+1 value, but assigning to it a maximal possible value with 

refer to V j, that is Vj+1 = Vj (cxj+1 + 1)/[c(xj – 1) + 1] – 1. If Vj+1 > Vj 
xj+1/xj, then j := j + 1 and go to Step 7.2.1. 

7.2.4. The Vj value is too large. Reducing the Vj value (and may be those of the 
Vk,  ones), but assigning to it a maximal possible value with 
refer to Vj+1. Thus, for : 

7.2.4.1. Vk = Vk+1 xk/xk+1 – 1. If Vk > Vk-1 xk/xk-1, then j := j + 1 and go to Step 
7.2.1. 

7.2.4.2. The Vk-1 value is too large. If k > 2, then k := k – 1 and go to Step 
7.2.4.1. 

7.2.4.3. If V2 ≤ V1x2/x1, then the solution doesn’t exist because the V1 value 
can’t be reduced. Stop. 

8. If i < n, then i := i + 1 and go to Step 5. 
9. The values of Vi,  were found. If g = 0, then Ui = Vi, ; g = 1 and go 

to Step 2. 
10. If g = 1, then Vi := [(Vi + Ui)/2], . Stop. 

The obtained values of Vi,  can be checked by applying the respective 
APP method.  

Algorithm A2 was implemented in the computer application SIMAP. Examples 
1 and 2 using SIMAP are described below. 

Example 1 of generating of a d’Hondt method apportionment which fully favors 
large beneficiaries. Initial data: c = 1; M = 279; n = 20; V1 = 20000; g = 0; the xi, 

 values are specified in Table 1. Some results of calculations using SIMAP 
are systemized in Table 1. 

Table 1 - Calculations for the apportionment to Example 1 
i Vi xi 10-8xi/Vi  i Vi xi 10-8xi/Vi  i Vi xi 10-8xi/Vi  i Vi xi 10-8xi/Vi 
1 20000 30 150000 6 13336 20 149970 11 8672 13 149908 16 4003 6 149888 
2 18001 27 149992 7 12670 19 149961 12 7338 11 149905 17 2669 4 149869 
3 16668 25 149988 8 12004 18 149950 13 6671 10 149903 18 2002 3 149850 
4 15335 23 149984 9 10671 16 149939 14 5337 8 149897 19 1335 2 149813 
5 14669 22 149976 10 9338 14 149925 15 4670 7 149893 20 668 1 149701 

Data of Table 1 were checked – the apportionment is a d’Hondt method’s one. 
At the same time it complies with requirements (1). Thus, it fully favors large 
beneficiaries. One has V(g=0) = 186957, ΔM(g=0) = 7. Also, as expected, it takes 
place xi > ai if and only if i ≤ K, where K = max{j  | xj > aj}. For Example 1 at g 
= 0, one has K(g=0) = 7, concretely: xi = ai + 1, i  and xi = ai, i . Thus, 
with refer to particular beneficiaries, seven beneficiaries (  ) are favored, and 
thirteen beneficiaries (i  ) are disfavored.  
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It was identified that depending of the g value, the results can strongly differ. 
For example, the results of calculations for initial data of Example 1, but for the case 
of g = 1 (Example 2), using SIMAP are systemized in Table 2. 

Table 2 - Calculations for the apportionment to Example 2 
i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi 
1 20000 30 1500 6 13999 20 1429 11 9333 13 1393 16 4666 6 1286 
2 18666 27 1446 7 13333 19 1425 12 7999 11 1375 17 3333 4 1200 
3 17333 25 1442 8 12666 18 1421 13 7333 10 1364 18 2666 3 1125 
4 15999 23 1438 9 11333 16 1412 14 5999 8 1334 19 1999 2 1001 
5 15333 22 1435 10 9999 14 1400 15 5333 7 1313 20 1333 1 0750 

Data of Table 2 were checked – the apportionment is a d’Hondt method’s one. 
At the same time, it complies with requirements (1). Thus, it fully favors large 
beneficiaries. One has V(g=0) = 192351, ΔM(g=1) = 10. Also, as expected, it takes 
place xi > ai if and only if i ≤ K, where K = max{j  | xj > aj}. For Example 2, 
one has K(g=1) = 9, concretely: x1 = a1 + 2; xi = ai + 1, i  and xi = ai, i . 
Thus, with refer to particular beneficiaries, nine beneficiaries (i  ) are favored, 
and eleven beneficiaries (i  ) are disfavored. Moreover the first beneficiary is 
strongly favored because of x1 > a1 + 1.  

Based on data in Tables 1 and 2 and on other results of calculations using 
SIMAP, may be concluded that for A2 algorithm the lower the g value, the lower the 
values of V, ΔM and of the number of beneficiaries that are favored (K). So, one has:  

V(g=0) = 186957 < V(g=0.5) = 192351 < V(g=1) = 198655; 
ΔM(g=0) = 7 < ΔM(g=0.5) = 9 < ΔM(g=1) = 10; 
K(g=0) = 7 < K(g=0.5) = 9 = K(g=1) = 9. 

 
 

9.4. Generating apportionments that fully favor small beneficiaries 
 
Similarly as in case of Section 3, initially in requirement (4) the factor 

Vi+1xi/xi+1 of the first inequality left side and the factor  of the 

second inequality right side are not known. Because of xi > xi+1, , one has 
Vi > Vi+1,  and basing on (2) to Vi,  can be preliminary assigned 
maximal possible values Vi = Vi-1 xi/xi-1 – 1, . If for at list one of the 
beneficiaries  occurs Vi ≥ Vi-1 then the solution doesn’t exist. Otherwise, 
taking into account requirement (4), the current Vi lower limit (Vi min) can be 
determined as  

 
(7) 

and the Vi high limit (Vi max) can be determined as 

 
(8) 

Similarly, instead of maximal possible values preliminary assigning to Vi, 
, one can use minimal possible values 
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(9) 

preliminary assigning to them. But thus determined minimal for assigning values 
must be lower than thus determined maximal for assigning values, otherwise the 
solution doesn’t exist. 

Thus, algorithm A3 for determining apportionments that fully favor small 
beneficiaries by linear divisor methods consists in the following. Initially, the values 
of Vi,  are determined using g = 0 (minimal possible values), after they are 
determined using g = 1 (maximal possible values) and the final values, for stability, 
are determined as arithmetic mean of the first two values for each Vi, . 
1. Initial data are: c, n, V1, xi > xi+1, . g = 0. 
2. Determining the preliminary values of sizes Vi,  basing on requirement (2) 

and relation (9). Thus, for  assigning to Vi a value in the range [Vi prmin; Vi 

prmax], where Vi prmin is determining according to (9) and Vi prmax = Vi-1 xi/xi-1 – 1: 
2.1. If Vi prmin > Vi prmax, then the solution doesn’t exist. Stop. 
2.2. Vi = Vi prmin + g(Vi prmax – Vi prmin). 

3. Concretizing the preliminary values of sizes Vi,  by taking into account the 
value of V1 and the requirements of the used apportionment method. Because of 
Step 2.2, the V1 value is compliant with requirement (7), that is the relation V1 ≥ V1 

min occurs. Checking the compliance of V1 value with requirement (8), that is if the 
relation V1 ≤ V1 max occurs. Thus, for : 
3.1. If V1 < Vi (cx1 + 1)/[c(xi – 1) + 1], then V1 and Vi are compliant, i := i + 1 and 

repeat Step 3.1. 
3.2. The Vi value is too small. If g = 1, then the solution doesn’t exist, because the 

Vi preliminary value is the maximal possible one. Stop.  
3.3. Increasing the Vi value, but assigning to it a minimal possible value with refer 

to V1: Vi = V1[(cxi – 1) + 1]/(cx1 + 1) + 1. If Vi < Vi-1 xi/xi-1, then i := i + 1 and 
go to Step 3.1. 

3.4. The Vi-1 value is too small. If i = 2, then the solution doesn’t exist, because Vi-1 
= V1. Stop. 

3.5. Increasing the Vi-1 value (and may be those of the Vj,  ones), but 
assigning to it a minimal possible value with refer to Vi. Thus, for  
in decreasing order: Vj = Vj+1 xj/xj+1 + 1. If Vj < Vj-1 xj/xj-1, then i := i + 1 and 
go to Step 3.1. 

3.6. If V2 ≥ V1x2/x1, then the solution doesn’t exist because Vi-1 = V1. Stop. 
4. The preliminary values of sizes Vi,  were determined, being the minimal 

possible one for the used g value; concretizing them (Steps 5-8). i = 2. Vn+1 = 0. 
5. Determining Vi min according to (7) and Vi max according to (8). Assigning to Vi a 

value in the range [Vi min, Vi max], the Vi min value being the minimal possible one for 
the used g value.  
5.1. If Vi min ≤ Vi max, then go to Step 5.4. 
5.2. The Vi max value is too small. If g = 1, then the solution doesn’t exist, because 

the Vi max value can’t be increased. Stop. 
5.3. Increasing the Vi+1 value, but assigning to it a minimal possible value with refer 
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to Vi, that is Vi+1 = Vi[c(xi+1 – 1) + 1]/(cxi  + 1) + 1. If Vi+1 ≥ Vixi+1/xi, then the 
Vi+1 value is too large. The solution doesn’t exist, because Vi+1 can’t be 
reduced. Stop. 

5.4. Vi = Vi min + g(Vi max – Vi min).  
6. If i < n, then actualizing Vk,  by assigning to them values in the range 

[Vk amin; Vk amax], where Vk amin is determining according to (9) and Vk amax = Vk-1 

xk/xk-1 – 1. Thus, for : 
6.1. If Vk amin > Vk amax, then the solution doesn’t exist. Stop. 
6.2. Vk = Vk amin + g(Vk amax – Vk amin). 

7. Checking the sizes Vj,  values compliance with requirement (4), taking into 
account the new values of sizes Vk, . Because of Step 6.3, they are 
compliant with requirement (7), that is Vj ≥ Vj min,  occur. 
7.1. Checking the V1 value compliance with requirement (8), that is if the relation 

V1 ≤ V1 max occurs. Thus, for : 
7.1.1. If V1 < Vj(cx1 + 1)/[c(xj – 1) + 1], then j := j + 1 and repeat Step 7.1.1. 
7.1.2. The Vj value is too small. If g = 1, then the solution doesn’t exist, because 

the Vj value is the maximal possible one. Stop. 
7.1.3. Increasing the Vj value, but assigning to it a minimal possible value with 

refer to V1, that is Vj = V1[c(xj – 1) + 1]/(cx1 + 1) + 1. If Vj < Vj-1 xj/xj-1, 
then j := j + 1 and go to Step 7.1.1. 

7.1.4. The Vj-1 value is too small. If j = 2, then the solution doesn’t exist, 
because Vj-1 = V1. Stop. 

7.1.5. Increasing the Vj-1 value (and may be those of the Vj,  ones), 
but assigning to it a minimal possible value with refer to Vj. Thus, for 

 in the decreasing order: 
7.1.5.1. Vk = Vk+1 xk/xk+1 + 1. If Vk < Vk-1 xk/xk-1, then  j := j + 1 and go to Step 

7.1.1. 
7.1.5.2. The Vk-1 value is too small. If k > 2, then k = k – 1 and go to Step 

7.1.5.1. 
7.1.5.3. If V2 ≥ V1x2/x1, then the solution doesn’t exist because Vi-1 = V1. Stop. 

7.2. Checking the Vj,  values compliance with requirement (6), that is if the 
relations Vj ≤ Vj max,  occur. Thus, for : 

7.2.1. If Vj < Vj max, where Vj max is determined according to (8), then  j := j + 1 
and repeat Step 7.2.1.  

7.2.2. The Vj+1 value is too small. If g = 1, then the solution doesn’t exist, 
because the Vj+1 value is the maximal possible one. Stop. 

7.2.3. Increasing the Vj+1 value, but assigning to it a minimal possible value with 
refer to V j, that is Vj+1 = Vj [c(xj+1 – 1) + 1]/(cxj + 1) + 1. If Vj+1 < Vj 
xj+1/xj, then then  j := j + 1 and go to Step 7.2.1. 

7.2.4. The Vj value is too small. Increasing the Vj value (and may be those of Vk, 
 ones), but assigning to it a minimal possible value with refer 

to Vj+1. Thus, for : 
7.2.4.1. Vk = Vk+1 xk/xk+1 + 1. If Vk < Vk-1 xk/xk-1, then j := j + 1 and go to Step 

7.2.1. 
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7.2.4.2. The Vk-1 value is too small. If k > 2, then k = k – 1 and go to Step 
7.2.4.2. 

7.2.4.3. If V2 ≥ V1x2/x1, then the solution doesn’t exist because Vj-1 = V1. Stop. 
8. If i < n, then i := i + 1 and go to Step 5. 
9. The values of Vi,  were found. If g = 0, then Ui = Vi, ; g = 1 and go 

to Step 2. 
10. If g = 1, then Vi := [(Vi + Ui)/2], . Stop. 

The obtained values of Vi,  can be checked by applying the respective 
APP method.  

Algorithm A3 was implemented in the computer application SIMAP. Examples 3 
and 4 using SIMAP are described below. 

Example 3 of generating of a Sainte-Laguë method apportionment which fully 
favors small beneficiaries. Initial data: c = 2; M = 279; n = 20; V1 = 20000; g = 0; the 
xi,  values are the same as for Example 1. Some results of calculations using 
SIMAP are systemized in Table 3. 

Table 3 - Calculations for the apportionment to Example 3 
i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi 
1 20000 30 15000 6 12787 20 15641 11 8197 13 15859 16 3607 6 16634 
2 17378 27 15537 7 12132 19 15661 12 6886 11 15974 17 2296 4 17422 
3 16066 25 15561 8 11476 18 15685 13 6230 10 16051 18 1640 3 18293 
4 14755 23 15588 9 10164 16 15742 14 4919 8 16263 19 984 2 20325 
5 14099 22 15604 10 8853 14 15814 15 4263 7 16420 20 328 1 30488 

Data of Table 3 were checked – the apportionment is a Sainte-Laguë method’s 
one. At the same time it complies with requirements (2). Thus, it fully favors small 
beneficiaries. One has V(g=0) = 177060, ΔM(g=0) = 10. Also, as expected, it takes 
place xi > ai if and only if i ≥ K, where K = min{j  | xj > aj}. For Example 2 at g 
= 0, one has K(g=0) = 10. Also, it takes place a1 = 31 > x1 = 30. So, one has: x1 = a1 – 
1; xi = ai, i  and xi = ai + 1, . With refer to particular beneficiaries, 
eleven beneficiaries ( ) are favored, and nine beneficiaries ( ) are 
disfavored. Moreover the first beneficiary is strongly disfavored because of x1 < a1. 

It was identified that depending of the g value, the results can strongly differ. 
For example, the results of calculations for initial data of Example 3, but for the case 
of g = 1 (Example 4), using SIMAP are systemized in Table 4. 

Table 4 - Calculations for the apportionment to Example 4 
i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi 
1 20000 30 150000 6 13330 20 150038 11 8663 13 150063 16 3996 6 150150 
2 17999 27 150008 7 12663 19 150043 12 7330 11 150068 17 2663 4 150207 
3 16665 25 150015 8 11996 18 150050 13 6663 10 150083 18 1997 3 150225 
4 15331 23 150023 9 10663 16 150052 14 5330 8 150094 19 1331 2 150263 
5 14664 22 150027 10 9330 14 150054 15 4663 7 150118 20 665 1 150376 

Data of Table 4 were checked – the apportionment is a Sainte-Laguë method’s 
one. At the same time it complies with requirements (2). Thus, it fully favors small 
beneficiaries. One has V(g=1) = 185942, ΔM(g=1) = 13. Also, as expected, it takes 
place xi > ai if and only if i ≥ K, where K = min{j  | xj > aj}. For Example 4, one 
has K(g=1) = 8. So, one has: xi = ai, i  and xi = ai + 1, i . Thus, with refer 
to particular beneficiaries, thirteen beneficiaries (i  ) are favored, and seven 
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beneficiaries (  ) are disfavored.  
Based on data in Tables 3 and 4 and on other results of calculations using 

SIMAP, may be concluded that for A3 algorithm, as for the A2 algorithm, the lower 
the g value, the lower the values of V, ΔM  and of the number of beneficiaries that are 
favored (M – K + 1). So, one has:  

V(g=0) = 177060 < V(g=0.5) = 181494 < V(g=1) = 185942; 
ΔM(g=0) = 11 = ΔM(g=0.5) = 11 < ΔM(g=1) = 13; 
K(g=0) = 10 = K(g=0.5) = 10 < K(g=1) = 8. 
 
 
Conclusions 
 
In order to determine linear divisor methods’ apportionments which fully favor 

beneficiaries, the algorithms A2 and A3 were elaborated. They guarantee the solution 
(if it exists), regardless of the value of n. The A2 algorithm is for the generation of 
apportionments which fully favor large beneficiaries and A3 algorithm is for the 
generation of apportionments which fully favor small beneficiaries. These two 
algorithms are implemented in the computer application SIMAP. Four examples of 
calculations at n = 20 using SIMAP are described: 

- Example 1 of a d’Hondt method’s apportionment which fully favors large 
beneficiaries – the Vi,  values were determined at g = 0; 

- Example 2 of a d’Hondt method’s apportionment which fully favors large 
beneficiaries – the Vi,  values were determined at g = 1; 

- Example 3 of a Sainte-Laguë method’s apportionment which fully favors small 
beneficiaries – the Vi,  values were determined at g = 0; 

- Example 4 of a Sainte-Laguë method’s apportionment which fully favors small 
beneficiaries – the Vi,  values were determined at g = 1. 

All four obtained apportionments fully favor beneficiaries even if the n value is 
relatively large (n = 20). In this context, it should be noted that in all 25 million 
variants of initial data with n = 20, for which the Vi,  values were generated 
stochastically at uniform distribution, none of the apportionments obtained using the 
SIMAP application [15] does not fully favor the beneficiaries. 

At the same time, it was identified that the results of calculations depends 
considerably not only on the initial data V1 and xi, , but also on the parameter 
g value of algorithms A2 and A3. For both algorithms, the lower the g value (0 ≤ g ≤ 
1), the lower the values of variable V and of the number of beneficiaries that are 
favored. 

 
 
 
 
 
 
 
 


