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Introduction

Often it is necessary to distribute a given number M of discrete entities of the
same kind among n beneficiaries, in proportion to a numerical characteristic assigned
to each of them V;, i = 1,n. This is known as proportional apportionment (APP)
problem [1-3]. The integer character of this problem usually causes a certain
disproportion of the apportionment {x;, i = 1,n} [1, 4, 5], some beneficiaries being
favored at the expense of the others. Such favoring leads to the increase of
disproportionality of the apportionment. Therefore, reducing the favoring in question
is one of the basic requirements when is choosing the APP method to be applied for
apportionments.

As it is well known, the d’Hondt method [6] favors large beneficiaries (with
larger V; value) [1, 4, 7, 8], and Huntington-Hill method [9] favors the small ones
(with smaller V; value) [4, 10]. But which of the two favors beneficiaries to a larger
extent? Preferences, in this sense, between methods, can help. Par example, in [11],
five APP methods are placed ,,in the order as they are known to favor larger parties
over smaller parties”. However, the best way is to estimate this property
quantitatively. One approach in this aim is proposed in [12]. Another, the “ total (full)
favoring”, based on the definition of favoring of large beneficiaries or of the small
ones by an APP method done in [1], is examined in [15, 16]. In [15], it was shown
that the frequency of full favoring in apportionments, for the widely used Hamilton
(Hare) [13], Sainte-Lagué (Webster) [14], d’Hondt (Jefferson), Huntington-Hill and
Adapted Sainte-Lagué methods, is strongly decreasing on n, becoming approx. 0 at n
> 7+10. In [16], the conditions of linear divisor methods’ (LDMs’) apportionments
compliance with the requirements of full favoring of large beneficiaries or of the
small ones were determined. Also, the Al algorithm for determining the LDMs’
apportionments which fully favor beneficiaries was elaborated and some examples
with the use of this algorithm were given. This algorithm is simple, but it doesn’t
guarantee the obvious solution. Aspects of the guaranteed generation of LDMSs’
apportionments, which fully favor large beneficiaries or the small ones, are examined
in this paper.

9.1. Essence of favoring and of full favoring of beneficiaries in apportionments

The essence of favoring of beneficiaries in apportionments is described in such
papers as [4, 7, 10]. In [12], for example, three notions of favoring of beneficiaries by
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an APP method are distinguished:

a) favoring of a beneficiary in an apportionment;

b) favoring of large beneficiaries or of the small ones in an apportionment;

c) favoring of large beneficiaries or of the small ones overall by an

apportionment method.

It is considered that a beneficiary i is favored if a larger number x; of entities is
distributed to him than would be due according to the V; value, more precisely if x; >
MV;/V,where M=x,+x,+ ... +tx,and V=V, + Vo, + ... + V,. Of course, the lack of
favoring is possible only if the equalities a; = MV;/V, i = 1,n take place; here a; =
LMV V], where [ z] means the integer part of the real number z. In practice, such
equalities rarely occur and that is why some beneficiaries are favored and others,
respectively, are disfavored. The notation AM =M — a; + a, + ... + a, will also be
used.

In formalized form, the first, probably, definition of favoring of large
beneficiaries or of the small ones by an APP method is given in [1]. But the
requirements of this definition are very strong - no methods compliant to them and
used in practice are known. At the same time, as mentioned in [15], these conditions
can be used to identify the “full favoring” of large beneficiaries or of the small ones
in concrete apportionments. Also, in [12], the conditions of the respective definition
in [1] were simplified, reducing considerably the volume of needed calculations for
computer simulation (see Definition 1).

Definition 1. In an apportionment, large beneficiaries are fully favored if

X; - X;

A (1)
and small beneficiaries are fully favored if

X; X

L |

7 @)
whenever x; > x;, where i and j take values from the {1, 2, 3, ..., n} ones [12].

Usually, in one and the same apportionment some large and some small
beneficiaries can be favored and, nevertheless, mainly large or, on the contrary, small
beneficiaries can be favored. Therefore, in [12] it is proposed to use two different
notions: “favoring” of large or of small beneficiaries and “full favoring” of large or of
small beneficiaries, the second being a particular case of the first one. The
compliance of an apportionment with requirement (1) or with the (2) one is referred
to “full favoring” of large beneficiaries or, respectively, of the small ones. The larger
notion of ,,favoring” of large beneficiaries or of the small ones is used when in an
apportionment are predominantly favored large beneficiaries or, on the contrary, the
small ones in sense of [12].

In order to identify whether apportionments that fully favor large beneficiaries
or the small ones can be obtained when applying an APP method, it is necessary to
know the compliance requirements of the APP method in question with requirement
(1) or, respectively, the (2) one.
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9.2. Compliance of LDMs’ apportionments with requirements (1) or (2)

From the multitude of APP methods, there some linear divisor methods [8] are
examined. The conditions for compliance of LDMs’ apportionments, at ¢ > 0 and,
separately, at ¢ > 1, with requirements (1) or the (2) one were defined in [16]. Also,
as shown in [16], at ¢ > 0 no one of linear divisor methods is always compliant with
the requirement (1) of full favoring of large beneficiaries and with the requirement
(2) of full favoring of small beneficiaries. So, it is of interest to study apportionments
that fully favor beneficiaries.

It is well known that d’Hondt method (¢ = 1) strongly favors large beneficiaries
[4, 7]. At the same time, the lower is the value of c, the greater is the grade of
favoring of large beneficiaries by the respective linear divisor method [8]. That's why
below only cases with ¢ > 1 are considered. Also, it is easier to analyze
apportionments when beneficiaries are ordered by Vi, i = 1,n values or the x;,
I = 1,n ones. Evidently, for “proportional” apportionments examined in this paper, if
X;>Xxi+1, L = 1,n — 1 then the relations V; > Vi1, 1 = 1,n — 1 occur, too.

The conditions for compliance of linear divisor methods’ apportionments, at ¢ > 1
and x; > x;41, 1 = 1,n — 1, with requirements (1) or the (2) one are, respectively, [16]:

X, c(x;—1)+1
maxyV;_; ——, max |V <V
X;_q j=i+1m cx; + 1 3)
. JC!- . CJC!- + 1 . (
R Gt - e v | St
and
x; c(x; —1)+1
max{V,,, ——, max_|V; <V,
X;pq J=1a-1 cx; + 1 2
_ X; _ cx; +1 . (
smimVi s e e ot

9.3. Generating apportionments that fully favor large beneficiaries

According to [16], one of the ways of determining apportionments which fully
favor large/small beneficiaries, for linear divisor methods with ¢ > 1, is the following.
Starting from {V,, x;, > x; + 1, 1t =1,mn—1} values and using formula (3) or,
respectively, the (4) one and a special iterative algorithm, one can obtain the set of V,
1 = 1,n values and, thus, the apportionment that corresponds to requirement (1) or,
respectively, to the (2) one of Definition 1.

A simple algorithm (A1), which for small values of n can be easy implemented
using a table processor, for example, Microsoft Excel, is described in [16]. But this
algorithm doesn’t guarantee the obvious solution. They guarantee the solution (if it
exists), regardless of the value of n, the relatively laborious A2 and A3 algorithms,
described below.

Let’s begin with algorithm A2 for the generating of apportionments that fully
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favor large beneficiaries. Because initially only the {Vi, x; > x4y, I =1,n—1}

values are known, in requirement (3) the factor r_ max_ [V "ﬂ{l ] of the first

inequality left side and the factor Vi+ixi/x;+1 of the second inequality right side are not

known. Because of x;>x; 1, i =1,n—1,one has V;> V;;;,1 = 1,n — 1 and basing

on (1) to ¥, i = 2,n can be preliminary assigned minimal possible values V; = LV

xixi1 ]+ 1,1 = 2,n. If for at list one of the beneficiaries i = 2,n occurs V; > Vy.i, then

the solution doesn’t exist. Otherwise, taking into account requirement (3), the current

Vi lower limit (V; min) can be determined as

\ { X, c(x;,—1)+1 H
Va’ min — |MdX Va’—l—i _EHEL"( I"; +1 (5)
X;_q j=r+Lnm cx; +1
and the V; high limit (¥; max) can be determined as
_ x; _ cx; +1

Va’ max [mm {VHI :J;Eiu:l}l [Ll; Cl:xj _ 1) +1 }‘ —L (6)

Similarly, instead of minimal possible values preliminary assigned to Vi,
I = 2,n, one can use maximal possible values V; = V. — 1, I = 2,n preliminary
assigned to them. If for at least one of beneficiaries the relation V; =V, — 1 < | Vi
xi/xi1) + 1 oceurs, that is | Vi1 (xi.1 — x;)/xi.1] < 2, then the solution doesn’t exist.

Thus, algorithm A2 for determining apportionments of full favoring of large
beneficiaries by linear divisor methods consists in the following. Initially, the V;,
i = 2,n values are determined using g = 0 (minimal possible values), after they are
determined using g = 1 (maximal possible values) and the final values, for stability,
are determined as the arithmetic mean of the first two values for each V;, i = 2,n. Of
course, one can use another value for g.

1. Initial data are: ¢, n, Vi, x;> x;+1,i = L,n— 1. g=0.

2. Determining the values of sizes Vj, I = 2,7 basing on requirement (1) only. Thus,
for i = 2,n, assigning to ¥; a value in the range [| Vi x/xi1 ]+ 1; Vi — 1]

2118 Vi — |_V_1 xi/xi1] < 2, then the solution doesn’t exist. Stop.
22.Vi=LVixixid + 1+ gVir =LV xixia ] - 2).

3. Concretizing the values of sizes V,, i = 2,n by taking into account the value of V;
and the requirements of the used apportionment method. Because of Step 2.2, the
V1 value is compliant with requirement (6), that is the relation V; < V| max Occurs.
Checking the compliance of V; value with requirement (5), that is if the relation V,
> V) min occurs. Thus, fori = 2,n:

310 V1> Vife(x; — 1) + 1]/(cx; + 1), then V', and V; are compliant, i :=i + 1 and
repeat Step 3.1.

3.2.The V; value is too large. If g = 0, then the solution doesn’t exist, because the V;
preliminary value is the minimal possible one. Stop.

3.3.Reducing the V; value, but assigning to it a maximal possible value with refer
to V1. Thus, Vi = Vi(ex; + 1)/[c(ey — 1) + 171 = 1. If V; > Viy xi/xiy, then i := i +
1 and go to Step 3.1.

3.4.The V., value is too large. If i = 2, then the solution doesn’t exist, because V.
= V. Stop.
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3.5.Reducing the Vi, value (and may be those of the V;, j = 2,1 — 2 ones), but
assigning to it a maximal possible value with refer to V;. Thus, for j =1— 1,1
in decreasing order, thatis V; = |_Vj+1xj/xj+1_| —1.If V;> Vi1 xj/xj.1, theni =i+ 1
and go to Step 3.1.

3.6.If V> < Vixo/x1, then the solution doesn’t exist because the V; value can’t be
reduced. Stop.
4. The preliminary values of sizes Vi, i = 2,n were determined, being the maximal
possible one for the used g value; concretizing them (Steps 5-8). Thus, i =2. V11 = 0.
5. Determining V; min according to (5) and V; max according to (6). Assigning to V; a
value in the range [V;min, Vimax], the Vimax value being the maximal possible one for
the used g value.
5.1.If Vimin < Vimax, then go to Step 5.4.
5.2.The V; min value is too large. If g = 0, then the solution doesn’t exist, because
the V; min value can’t be reduced. Stop.

5.3.Reducing the Vi1 value, but assigning to it a maximal possible value with refer
to V;, that is Vi = Vi(exios + D)/[e(x; — 1) + 171 = 1. If Visy < Vixisi/x;, then the
Vi1 value 1s too small. The solution doesn’t exist, because V;; can’t be
increased. Stop.

541/1 = I/irnin + g(I/z max imin)-

6. If i < n, then actualizing V}, k =1 + 1,n by assigning to them values in the range
[|_Vk_1xk/xk_1J +1; Vi1 —1]. Thus, fork =1+ 1, n:
6.1.If Vi1 — Vi1 xi/xx1] < 2, then the solution doesn’t exist. Stop.
6.2.Vi=Vir xwxi ]+ 1+ gV — L Vi i ] - 2).

7. Checking the sizes Vj, j = 1,1 values compliance with requirement (3), taking into
account the new values of sizes Vi, k=1+1,n. They are compliant with
requirement (6), that is V; < Vimax, ] = 1,1 occur.
7.1.Checking the V; value compliance with requirement (5), that is if the relation

V1> V) min occurs. Thus, for j = 2,1

7.1.1.IE V1> Vi[e(xi — 1) + 1]/(ex; + 1), then j :=j + 1 and repeat Step 7.1.1.

7.1.2. The V; value is too large. If g = 0, then the solution doesn’t exist, because
the V; value 1s the minimal possible one. Stop.

7.1.3. Reducing the V; value by assigning to it a maximal possible value with
refer to V1, that is V; =[ Vi(ex; + 1)/ — 1) + 171 = 1. If ¥ > Vi xi/x1,
thenj :=j + 1 and go to Step 7.1.1.

7.1.4. The V., value is too large. If j = 2, then the solution doesn’t exist, because
Vj_l =V. StOp.

7.1.5. Reducing the V., value (and may be those of the V}, j = 2,1 — 2 ones), but
assigning to it a maximal possible value with refer to V. Thus, for
k = j — 1,2 in the decreasing order:

7.1.6. Vi = Vier xi/xpr | — 1. If Vi > Viey xi/xet, then j = j + 1 and go to Step

7.1.1.
7.1.6.1. The Vi, value is too large. If £ > 2, then £k = k — 1 and go to Step
7.1.5.1.

7.1.6.2. If V> < Vixo/x1, then the solution doesn’t exist because the V; value
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can’t be reduced. Stop.
7.2.Checking the ¥}, j = 2,1 values compliance with requirement (5), that is if the
relations V; > Vjmin, j = 2,1 occur. Thus, forj = 2,1
7.2.1. If V;> V; min, Where Vjmin 1s determined according to (5), thenj :=j + 1 and
repeat Step 7.2.1.

7.2.2. The Vj value is too large. If g = 0, then the solution doesn’t exist,

because the Vj:1 value is the minimal possible one. Stop.

7.2.3. Reducing the V., value, but assigning to it a maximal possible value with

refer to V', that is Vi =[ V) (cxi + /ey — 1) + 1] = 1. If Vi > W
Xj+1/xj, then j :=j + 1 and go to Step 7.2.1.
7.2.4. The V; value is too large. Reducing the V; value (and may be those of the
Vi, k = 2,1 — 2 ones), but assigning to 1t a maximal possible value with
refer to Vj11. Thus, for k = j, t:
7241 Vi=[Vier xilxger | = 1IE Vi > Viey Xi/xpen, then j :=j + 1 and go to Step
7.2.1.
7.2.4.2. The Vi, value is too large. If £k > 2, then k := k — 1 and go to Step
7.2.4.1.
7.2.4.3. If V, < Vixy/x1, then the solution doesn’t exist because the V; value
can’t be reduced. Stop.
8. If i <m,theni:=i+ 1 and go to Step 5.
9. The values of ¥, i = 1,n were found. If g = 0, then U;= V;, i = 1,n; g =1 and go
to Step 2.
10. If g =1, then V; == [(V; + U))/2], i = 1,n. Stop.

The obtained values of V;, i = 1,n can be checked by applying the respective
APP method.

Algorithm A2 was implemented in the computer application SIMAP. Examples
1 and 2 using SIMAP are described below.

Example 1 of generating of a d’Hondt method apportionment which fully favors
large beneficiaries. Initial data: ¢ = 1; M = 279; n = 20; V; = 20000; g = 0; the x;,
I = 1,n values are specified in Table 1. Some results of calculations using SIMAP
are systemized in Table 1.

Table 1 - Calculations for the apportionment to Example 1

i Vi | xi [10%/Vi| | i Vi xi (10 Vil | i | Vi |xi |10/ Vil | i | Vi |xi|10%/V;
1 {20000 30| 150000 6 | 13336 |20| 149970 | |11|8672 |13 | 149908 164003 | 6 | 149888
21 1800127 | 149992 7| 12670 [ 19| 149961 1217338 | 11| 149905 1712669 | 4 | 149869
3|1 16668|25| 149988 8 | 12004 |18| 149950 | | 136671 |10| 149903 1812002 | 3 | 149850
41 15335(23| 149984 9| 10671 | 16| 149939 | |14|5337| 8 | 149897 | 19| 1335| 2 | 149813
51 14669| 22| 149976 10| 9338 |14]| 149925 1514670 | 7 | 149893 | |20| 668 |1 | 149701

Data of Table 1 were checked — the apportionment is a d’Hondt method’s one.
At the same time it complies with requirements (1). Thus, it fully favors large
beneficiaries. One has V(g=0) = 186957, AM(g=0) = 7. Also, as expected, it takes
place x; > a; if and only if i < K, where K= max{j = 1,n | x; > a;}. For Example 1 at g
=0, one has K(g=0) = 7, concretely: x;=a;+ 1, i = 1,7 and x;, = a;, i = 8,20. Thus,
with refer to particular beneficiaries, seven beneﬁciaries (i =1,7) are favored, and
thirteen beneficiaries (i = 8,20 ) are disfavored.
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It was identified that depending of the g value, the results can strongly differ.
For example, the results of calculations for initial data of Example 1, but for the case
of g =1 (Example 2), using SIMAP are systemized in Table 2.
Table 2 - Calculations for the apportionment to Example 2

i Vi | xi [107x/Vi| | i Vi | xi |107x/Vi| | i Vi |xi [107x/Vi| | i Vi | xi|107x/V;
1| 2000030 1500 6 |13999 20| 1429 1119333 13| 1393 16| 4666 | 6 | 1286
2 | 18666|27 1446 7 113333 |19| 1425 1217999 | 11 1375 1713333 (4| 1200
3| 17333|25 1442 8112666 |18 | 1421 13| 7333 10| 1364 182666 | 3 1125
411599923 1438 9 11333 |16| 1412 14| 5999 | 8 1334 1911999 | 2 | 1001
5| 15333|22 1435 10| 9999 | 14| 1400 15| 5333 | 7 1313 2011333 |1 | 0750

Data of Table 2 were checked — the apportionment is a d’Hondt method’s one.
At the same time, it complies with requirements (1). Thus, it fully favors large
beneficiaries. One has V(g=0) = 192351, AM(g=1) = 10. Also, as expected, it takes
place x; > a; if and only if i < K, where K = max{j = 1,n | x; > a;}. For Example 2,
one has K(g=1) =9, concretely: x; =a; +2; x;,=a; + 1, i= 29andx;=a;, i = 10,20.
Thus, with refer to particular beneficiaries, nine beneficiaries (i = 1,9 ) are favored,
and eleven beneficiaries (i = 10,20) are disfavored. Moreover the first beneficiary is
strongly favored because of x; > a; + 1.

Based on data in Tables 1 and 2 and on other results of calculations using
SIMAP, may be concluded that for A2 algorithm the lower the g value, the lower the
values of V, AM and of the number of beneficiaries that are favored (K). So, one has:

V(g=0) = 186957 < V(g=0.5) = 192351 < V(g=1) = 198655;

AM(g=0) =7 < AM(g=0.5) =9 < AM(g=1) = 10;

K(g=0)=7<K(g=0.5)=9=K(g=1)=09.

9.4. Generating apportionments that fully favor small beneficiaries

Similarly as in case of Section 3, initially in requirement (4) the factor

Viexi/x;+1 of the first inequality left side and the factor min [V cxit ] of the
j=i+1.n c{x;—l H+1

second inequality right side are not known. Because of x; > x;+1, i = 1,n — 1, one has
Vi> Vi, 1 =1,n—1 and basing on (2) to V,-, i = 2,1 can be preliminary assigned
maximal possible values V; = [ Vii xilxer ] — 1, i = 2,n. If for at list one of the
beneficiaries i = 2,n occurs ¥; > Vi then the solution doesn’t exist. Otherwise,
taking into account requirement (4), the current V; lower limit (V; min) can be
determined as

X; [ e(x; — 1)+ 1]

V: min = Viei—: v +1
i min max{ !+lx:+1 jﬂ;l_E!L'il _} CJC +1 } (7)

and the V; high limit (V; nax) can be determmed as
X; _ cx; + 1 }

V. = |min{V,_; ——; min |V
i max ! lx!__le:Hl.n_}C(xj_1]+1.

Similarly, instead of maximal possible values preliminary assigning to V,
I = 2,n, one can use minimal possible values

—1. (8)
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Vo=V _ Vc(x!-—l]—i—l 1
i — Yiprmin — }E}_E!l}_(l J ij + 1 (9)

preliminary assigning to them. But thus determined minimal for assigning values

must be lower than thus determined maximal for assigning values, otherwise the

solution doesn’t exist.

Thus, algorithm A3 for determining apportionments that fully favor small
beneficiaries by linear divisor methods consists in the following. Initially, the values
of V,, i = 2,n are determined using g = 0 (minimal possible values), after they are
determined using g = 1 (maximal possible values) and the final values, for stability,
are determined as arithmetic mean of the first two values for each V;, i = 2,n.

1. Initial data are: ¢, n, Vi, x; > xi1, 1 =1,n—1.g=0.

2. Determining the preliminary values of sizes V;, i = 2,1 basing on requirement (2)
and relation (9). Thus, for i = 2n assigning to V; a value in the range [V; prmin; Vi
prmax ], Where V; pmin is determining according to (9) and V; prmax = Vit Xixi1 | — 1
2.1.If Vi prmin > Viprmax, then the solution doesn’t exist. Stop.

2.2. I/z = I/iprmin + g(VviprmaX - iprrnin)-
3. Concretizing the preliminary values of sizes V;, i = 2,n by taking into account the
value of V; and the requirements of the used apportionment method. Because of
Step 2.2, the V) value is compliant with requirement (7), that is the relation V; > V;
min Occurs. Checking the compliance of V; value with requirement (8), that is if the
relation V7 <V} max Occurs. Thus, for i = 2,n:
3IF Vi< Vi(ex: + 1)/[e(x; — 1) + 1], then V; and V; are compliant, i ;=i + 1 and
repeat Step 3.1.

3.2.The V; value is too small. If g = 1, then the solution doesn’t exist, because the
Vi preliminary value is the maximal possible one. Stop.

3.3.Increasing the V; value, but assigning to it a minimal possible value with refer
to Vi: Vi=|Vi[(cxi— 1) + 1)/(exy + 1)+ 1. If Vi < Vi xi/xi, then i :==i + 1 and
go to Step 3.1.

3.4. The V;; value is too small. If i = 2, then the solution doesn’t exist, because V4
= V. Stop.

3.5.Increasing the Vi value (and may be those of the Vj, j = 2,1 — 2 ones), but
assigning to it a minimal possible value with refer to V. Thus, for j =1— 1,2
in decreasing order: V; = |_Vj+1 xj‘/Xj+1J + 1. If V; < Vi xi/xj1, then i :==i + 1 and
go to Step 3.1.

3.6.1f V> > Vixa/x1, then the solution doesn’t exist because V;.; = V;. Stop.

4. The preliminary values of sizes V;, i = 2,n were determined, being the minimal
possible one for the used g value; concretizing them (Steps 5-8). i =2. V11 = 0.

5. Determining V; min according to (7) and V; max according to (8). Assigning to V; a
value in the range [V min, Vimax], the Vimin value being the minimal possible one for
the used g value.
5.1.If Vimin < Vimax, then go to Step 5.4.
5.2.The V; max value is too small. If g = 1, then the solution doesn’t exist, because

the V; max value can’t be increased. Stop.
5.3.Increasing the V;:; value, but assigning to it a minimal possible value with refer
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to V;, that is Vi = LVi[c(xi1 — 1) + 1)/(ex; + 1)J+ 1. If Vi1 > Vixisi/x;, then the
Visi value is too large. The solution doesn’t exist, because Vi can’t be
reduced. Stop.

541/1 = I/irnin + g(I/imax_ I/imin)-

6. If i < n, then actualizing V, k =1 + 1,n by assigning to them values in the range
[Vi amin; Vi amax], Where Vi amin is determining according to (9) and Vi amax = | Vit
xelxet | — 1. Thus, fork =1+ 1,n:
6.1.If Vi amin > Vi amax, then the solution doesn’t exist. Stop.

6.2. Vk = Vkarnin + g(Vk amax — Vk amin)-

7. Checking the sizes Vj, j = 1,1 values compliance with requirement (4), taking into
account the new values of sizes Vi, k =1+ 1,n. Because of Step 6.3, they are
compliant with requirement (7), that is ¥;> ¥ min, ] = 1,1 occur.
7.1.Checking the ¥, value compliance with requirement (8), that is if the relation

Vi < V) max occurs. Thus, for j = 2, 1:

7.1.1. If Vi< Vi(exi + 1)/[e(x;— 1) + 1], thenj :=j + 1 and repeat Step 7.1.1.

7.1.2. The V; value is too small. If g = 1, then the solution doesn’t exist, because
the V; value is the maximal possible one. Stop.

7.1.3. Increasing the V; value, but assigning to it a minimal possible value with
refer to V3, that is ¥, = Vi[c(x — 1) + 1)/(exy + D)+ 1. If V) < Vi xi/x1,
thenj :=j+ 1 and go to Step 7.1.1.

7.1.4. The V., value is too small. If j = 2, then the solution doesn’t exist,
because V. = V;. Stop.

7.1.5. Increasing the V;.; value (and may be those of the V}, j = 2,1 — 2 ones),
but assigning to it a minimal possible value with refer to V;. Thus, for
k = j— 1,2 in the decreasing order:

7.1.5.1. Vi=|Viri xi/xerrd + 1. I Vi < Viey xi/xee1, then j:=j+ 1and go to Step
7.1.1.
7.1.5.2. The Vi value is too small. If £ > 2, then £k = k — 1 and go to Step
7.1.5.1.
7.1.5.3. If V2> Vixy/x1, then the solution doesn’t exist because V..; = V. Stop.
7.2.Checking the ¥}, j = 2,1 values compliance with requirement (6), that is if the
relations V; < Vjmax, ] = 2,1 occur. Thus, for j = 2, 1:

7.2.1. If V; < Vj max, Where V; max 1s determined according to (8), then j :=; + 1
and repeat Step 7.2.1.

7.2.2. The V1 value 1s too small. If g = 1, then the solution doesn’t exist,
because the V11 value is the maximal possible one. Stop.

7.2.3. Increasing the V1, value, but assigning to it a minimal possible value with
refer to ¥, that is Vi = LV [e(rer — 1) + 11(ex; + D]+ 1. If Vi < 7
X;j+1/x;, then then j :=j + 1 and go to Step 7.2.1.

7.2.4. The V; value is too small. Increasing the V; value (and may be those of V4,
k = 2,1 — 2 ones), but assigning to it a minimal possible value with refer
to V1. Thus, for k = j, 1.

72.4.1. V= |_Vk+1xk/xk+1J + 1. If Vi < Vi xi/xke1, thenj =j+1 and go to Step
7.2.1.
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7.2.4.2. The Vi value is too small. If £ > 2, then £k = k — 1 and go to Step
7.2.4.2.
7.2.4.3. If V> > Vixy/x, then the solution doesn’t exist because Vi = V. Stop.
8. Ifi<m,theni:=i+ 1and go to Step 5.
9. The values of V;, i = 1,n were found. If g = 0, then U;= V;, i = 1,n; g =1 and go
to Step 2.
10. If g =1, then V; == [(V; + U))/2], i = 1,n. Stop.

The obtained values of V;, i = 1,n can be checked by applying the respective
APP method.

Algorithm A3 was implemented in the computer application SIMAP. Examples 3
and 4 using SIMAP are described below.

Example 3 of generating of a Sainte-Lagué method apportionment which fully
favors small beneficiaries. Initial data: ¢ = 2; M = 279; n = 20; V; = 20000; g = 0; the
x;, i = 1,1 values are the same as for Example 1. Some results of calculations using
SIMAP are systemized in Table 3.

Table 3 - Calculations for the apportionment to Example 3

i Vi |xi |107x/Vil | i Vi xi |10/ Vil i | Vi |xi|107x/Vil|i| Vi |xi|107x/Vi
1 {20000|30| 15000 6| 12787 |20| 15641 11| 8197 [13| 15859 163607 | 6| 16634
2 11737827 | 15537 71 12132 | 19| 15661 1216886 11| 15974 1712296 |4 | 17422
3 (16066|25| 15561 8| 11476 |18| 15685 1316230 (10| 16051 1811640 | 3 | 18293
4114755123 | 15588 91| 10164 |16| 15742 1414919 | 8 | 16263 19| 984 | 2 | 20325
5(114099|22| 15604 10| 8853 |14| 15814 1514263 | 7 | 16420 201 328 | 1| 30488

Data of Table 3 were checked — the apportionment is a Sainte-Lagué method’s
one. At the same time it complies with requirements (2). Thus, it fully favors small
beneficiaries. One has V(g=0) = 177060, AM(g=0) = 10. Also, as expected, it takes
place x; > a; if and only if i > K, where K = min{j = 1,n | x; > a;}. For Example 2 at g
= 0, one has K(g=0) = 10. Also, it takes place a; = 31 > x; = 30. So, one has: x; = a; —
l; x;i=a;, i =29 and x; = a; + 1, 1 = 10,20. With refer to particular beneficiaries,
eleven beneficiaries (i = 10,20) are favored, and nine beneficiaries (i = 1,9) are
disfavored. Moreover the first beneficiary is strongly disfavored because of x; < a;.

It was identified that depending of the g value, the results can strongly differ.
For example, the results of calculations for initial data of Example 3, but for the case
of g =1 (Example 4), using SIMAP are systemized in Table 4.

Table 4 - Calculations for the apportionment to Example 4

i Vi | xi [107x/Vi| | i Vi xi |10/ Vil | i | Vi |xi |10/ Vil | i | Vi |xi|107x/V;
1 {20000 30| 150000 6 | 13330 |20 150038 118663 13| 150063 163996 | 6 | 150150
2117999 27| 150008 7| 12663 | 19| 150043 1217330 11| 150068 1712663 | 4 | 150207
3116665 |25| 150015 8| 11996 |18| 150050 | |13|6663 10| 150083 1811997 | 3 | 150225
4 115331 (23| 150023 9| 10663 | 16| 150052 1415330 | 8 | 150094 | |19 1331 |2 | 150263
5114664 22| 150027 10| 9330 |[14] 150054 | |15({4663 | 7 | 150118 | |20| 665 | 1| 150376

Data of Table 4 were checked — the apportionment is a Sainte-Lagué method’s
one. At the same time it complies with requirements (2). Thus, it fully favors small
beneficiaries. One has V(g=1) = 185942, AM(g=1) = 13. Also, as expected, it takes
place x; > g; if and only if i > K, where K = min{j = 1,n | x; > g;}. For Example 4, one
has K(g=1) = 8. So, one has: x;=a;, i = 1,7 and x; = a; + 1, i = 8,20. Thus, with refer
to particular beneficiaries, thirteen beneficiaries (i = 8.2'[] ) are favored, and seven
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beneficiaries (i = 1,7 ) are disfavored.

Based on data in Tables 3 and 4 and on other results of calculations using
SIMAP, may be concluded that for A3 algorithm, as for the A2 algorithm, the lower
the g value, the lower the values of V;, AM and of the number of beneficiaries that are
favored (M — K + 1). So, one has:

V(g=0) = 177060 < V(g=0.5) = 181494 < V(g=1) = 185942;

AM(g=0)=11=AM(g=0.5)=11 < AM(g=1) = 13;

K(g=0)=10=K(g=0.5) =10 <K(g=1) = 8.

Conclusions

In order to determine linear divisor methods’ apportionments which fully favor
beneficiaries, the algorithms A2 and A3 were elaborated. They guarantee the solution
(if it exists), regardless of the value of n. The A2 algorithm is for the generation of
apportionments which fully favor large beneficiaries and A3 algorithm is for the
generation of apportionments which fully favor small beneficiaries. These two
algorithms are implemented in the computer application SIMAP. Four examples of
calculations at n = 20 using SIMAP are described:
- Example 1 of a d’Hondt method’s apportionment which fully favors large
beneficiaries — the V, i = 1,n values were determined at g = 0;

- Example 2 of a d’Hondt method’s apportionment which fully favors large
beneficiaries — the V;, i = 1,n values were determined at g = I;

- Example 3 of a Sainte-Lagué method’s apportionment which fully favors small
beneficiaries — the V, i = 1,n values were determined at g = 0;

- Example 4 of a Sainte-Lagué method’s apportionment which fully favors small
beneficiaries — the V;, i = 1,n values were determined at g = 1.

All four obtained apportionments fully favor beneficiaries even if the n value is
relatively large (n = 20). In this context, it should be noted that in all 25 million
variants of initial data with n = 20, for which the ¥}, i = 1,n values were generated
stochastically at uniform distribution, none of the apportionments obtained using the
SIMAP application [15] does not fully favor the beneficiaries.

At the same time, it was identified that the results of calculations depends
considerably not only on the initial data ¥; and x;, i = 1,n, but also on the parameter
g value of algorithms A2 and A3. For both algorithms, the lower the g value (0 < g <
1), the lower the values of variable }J and of the number of beneficiaries that are
favored.
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